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ABSTRACT

A study is made using actual metric photography taken by Apollo 15

after the Trans Earth Injection (TEI) when the spacecraft left the lunar orbit.

After measurements on 12 frames were reduced for 11 known control and unknown

points on the eastern limb, a least squares adjustment program provided the

simultaneous solution for the selected points. The results indicate an improvement

in selenodetic control may be achieved over a limited portion of the lunar limb;

however, the solution could be further improved by strengthening the geometry of

intersecting rays through additional observations of the same area using film from

the succeeding Apollo missions.
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1. INTRODUCTION

It was shown in an earlier report (Sprague [33] ) that it is theorectically

feasible to extend control from points of known location to unknown points on the

lunar surface through the use of photogrammetric techniques with Apollo metric

photography taken after the spacecraft leaves the moon's orbit. Specifically,

this report used the theory with the data available from the Apollo 15 mission

(July, 1971). Whenever possible, the nomenclature and the testing with real

data followed the original report so that this is in part, a follow-on study; how-

ever, it is complete in that it stands alone on its own organization, results,

conclusions and recommendations.

Measuring the moon, establishing lunar control, preparing lunar charts

and solving for the physical shape, libration and orbiting parameters from earth-

based telescopes and photographs had progressed to the limit of the observational

capabilities of the equipment available when the first spacecraft approached the

moon [8]. Determining plate constants, effects of atmospheric 'seeing, ' and

continuous reference to Franz's earliest heliometric measurements were some

of the problems encountered and are discussed in the first section of the report.

The spacecraft, in particular, the Lunar Orbiter Series, provided a new

perspective to the moon and consequently a new chapter was written on lunar chart

preparation. The advent of man's venture to the surface forced to the forefront

the requirement of having known control in order to prepare for a successful

landing. The orbiting astronauts established landmark tracking points around the

lunar equator. According to Robert M. Bizzell and Rigdon E. Joosten of NASA [4]

these coordinates are felt to compose the most satisfactory control network

available. The Apollo 15 was the first to carry a complete metric camera

assembly designed to assist in the measure of the moon.
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Twenty of the second generation frames showing the eastern limb of the

moon receding from view with 100% overlap taken from TEI (Trans-Earth

Injection) + --20 minutes to TEI + - 47 minutes were selected for this study.

Four control points, three lunar landmark tracking and one earth-base control

point were found on the limb in the 'window' of visible features in the photo frames.

Seven additional points whose positions were estimated from ACIC charts were

selected as the NEC (New Extended Control) points which were solved for in

the adjustment.

These eleven points on twelve photographs were measured on an AP/C (Analyt-

ical Plotter/Commercial) and the subsequent coordinates were reduced for the

block adjustment program. The FORTBLOCK adjustment program processed

6 and 12 photo blocks and provided the adjusted coordinates for the eleven points

and twelve exposure stations. Due to the unusual geometry of receding photography

each of the 6 and 12 photo block adjustment was iterated six times. After the

sixth iteration of the 12 photo block a follow on program provided the adjusted

latitude and longitude of the seven NEC points from the adjusted selenographic

coordinates.

Although the results were reasonable one area of concern was evident.

The adjustment of the 6 and 12 photo block had an effect on the residuals and

standard deviations of the four control points. In almost all cases the resulting

standard deviations were larger than that provided by NASA. It is felt that this

is attributed to the following causes: a) only four control points were located,

b) the four control points were located on the limb of the photographed moon,

c) the receding photography provided a very small horizontal base-height ratio.

It is concluded that the resulting poor geometry could be improved by a) a more

equatorial TEI trajectory which would allow the available control points to be

centrally located, b) rephotographing the same NEC points on succeeding lunar

flights, c) reaccomplishing the adjustment by using the film and data from suc-

ceeding Apollo missions.
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2. HISTORY

The problem of unraveling the moon's history is a broad subject, cover-

ing as many areas of the physical sciences as any other. Since man has visited

the ever present neighbor as many more questions have been raised as have

been answered. The determination of the physical libration constants, the

shape of the moon, the measurement of fundamental features and production

of accurate lunar charts are all an interwoven part of this history and the

answers are as varied as the authors. An outline of the problems and previous

accomplishments is provided in earlier reports F8], r29], F331 and will not

be repeated here; however, prior to the presentation of this project a brief

introduction on measurement of lunar features and lunar charts is in order.

This chapter will describe the development of earth-based measurement of

lunar coordinates using the heliometer and earth-based photographs in the first

section. It will discuss the use of the heliometer by Franz, the measurements

of earth based photographs by the University of Manchester, the problems that

evolved, and ACIC's efforts at establishing lunar control coordinates. The

second section will discuss the improvements provided by spacecraft photography.

2.1 Development of Earth-Based Heliometric

and Photographic Measurements

Almost all notable efforts of measuring and establishing control on the

moon started with the development of the heliometer, a device used for measur-

ing angular separation from a reference point to the limb. The heliometer was

invented in 1748 by Bouguer and was modified by Dolland. The device con-

sisted of a telescope with two objectives mounted side by side so that two

images of an object would be formed and the movement of one in relation to the

other would provide measurement of angular distances. The modification consisted
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of replacing the two lenses by two halves of a bisected lens so that only one

superimposed image appeared at the focus. If one half moves in relation to the

other similar angular separation can be measured. Since it was used for

measuring the diameter of the sun it was called "heliometer. " Bessel used the

heliometer in 1839 to measure the distance between the center and lunar limb

in order to solve for physical librations [15]. Although precise measurements

have been made there are certain limitations. The largest aperture of any

heliometer used is 8 inches and based on physical optics it cannot resolve

angular separations smaller than one second of arc. Analysis of point loca-

tions refined further than this limitation is reaching for information inside

diffraction patterns F 14] .

The basis for earth-based measurements of lunar features stems from

Franz's 1890 heliometric measurement of eight craters in reference to the

ninth - a center crater named Mosting A. These nine points with their accura-

cies and inaccuracies have formed the basis for numerous subsequent measure-

ments. Franz measured an additional 141 points on five Lick Observatory

plates in 1891 and inconsistencies were already established for the location

of the assigned center point. In fact Ruffin and Meyer F31] show considerable

discrepancies by seven prominent men in establishing the coordinates of this

crater. A fundamental fault of Franz's measurements was the lack of deter-

mination of heights.

In 1958 Schrutka-Rechtenstamm reduced these 150 measurements and

he developed absolute heights (i. e., absolute heights above and below a sphere

with a radius of 1738. 0 km). It is important to note that this was the first

time that all heliometric readings were unified into a comprehensive mean

to compute the libration constants. A list of these features, their coordinates

and heights can be found in F311.

From this time all efforts-were directed towards determining the

heights of features. If one is given enough three dimensional coordinates one

5
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can determine the shape of the moon, in particular the tidal bulge and then

the answers to some of the questions may become possible. Of the numerous

efforts several are of interest.

In 1963, Baldwin in the Measure of the Moon, showed the results of

measurements on 696 lunar features, but the measurements were made on only

five Lick Observatory plates. G. A. Mills of the Department of Astronomy,

University of Manchester, England in 1967 increased the number of observations.

He divided the visible portion into 96 zones and he provided the measured and

reduced coordinates of 919 points. He also used the 'stereoscopic' method

which involved the taking of photographs at different librations to utilize the

apparent displacement effect. Although the displacement averages 150, the

effect provided measurements on at least 28 plates for each feature E20].

Three problems arise in the measuring and determining coordinates of

these lunar features and are discussed in subsequent paragraphs, 1) determination

of plate constants 2) coordinates were based on 38 selected Franz-Schratka-

Rechtenstamm and Meyer-Ruffin points whose coordinates were felt to be well

known 3) effects of atmospheric 'seeing. '

Zdenek Kopal, also of the Department of Astronomy, University of

Manchester working for AFCRL in 1969 - 1970,recognized the problem of

determining plate constants. His solution consisted of photographing the moon

on pre-exposed stellar plates. The great advantage of the star calibrated lunar

photographs is the ability to define the inclination of the lunar axis very precisely.

"The plate constants which are defined by comparison of the stellar positions

measured on the photographic plates to their equatorial coordinates include

the rotation transformation which makes the axis of measures parallel to the

projection of the ecliptic coordinates on the plate" [16].

A. A. Gurshtein and N. P. Slovokhotova of the Institute for Space Research,

Moscow, recognized that well-established lunar control must be found inde-

pendent of the original nine Franz points 11]. Their concept, though theorectical,
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is to solve the libration problem by long and systematic earth-based observations,

including the installation and use of cube-corner retro-reflectors and devices

for observing from the lunar surface at approximately 20 points. These could

be extended to 200 "first order" points for determining the moon's shape and

for small scale mapping (1:1,000,000) suchasthe ACIC LAC series. This net-

work could be further extended to 20, 000 near side points for "third order" work.

Since their concept involves a long-term solution, the authors evaluated six

previous catalogues by men prominent in the field. The coordinates of 192

easily identifiable, symmetrical, well-distributed features were selected to

be used as a fundamental network until their concept was attempted 11l.

The 'seeing' problem was investigated by Donald L. Meyer when ACIC

worked on establishing lunar control for their charting efforts prior to and

during the Apollo missions. By experimenting and testing with different

sequences and times of exposures, efforts were made at reducing the circular

error of plate-to--plate transformation for mean plate coordinates. The purpose

of the test was to demonstrate the distortions caused by 'seeing' effects as op-

posed to measurement and interpretation errors and it was shown that the error

can be reduced from 22 microns to 8 microns when a particular sequence and

time exposure is used - but the important point is that this is an additional

problem area included in the solutions. These distortions can give a dis-

placement of 1 - 2 km which is nearly as large as the departures from the

lunar sphere (averages 1738 ± 3 km, Kopalj required for determination of the

lunar shape, orbital motion and libration constants problem etc. F 19 .

The ACIC effort in 1965 at establishing lunar control is quite rigorous

and is explained fully in r1], r61 , F31]. The stereoscopic principal or inter-

section of perspective rays was used on a sequence of plates taken at Pic-du-Midi

Observatory, France and U. S. Naval Observatory, Flagstaff. Even at the best

resolution, the photographs only show features 1 - 3 km in size. The solution of

the 'seeing' problem in using featuires of this size was attempted by taking different
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sequences and exposures at these two observatories so that an averaging of the

displacements could be performed. ACIC selected 196 points for measurement

including 31 Franz-Schrutka points which were selected as fundamental points.

This list of 196 plus an additional list of 89 point locations along with the as-

sociated standard errors in x, y, h were used for this report and are described

in Chapter 3.

This brief outline of the efforts at establishing lunar control from earth-

based procedures is not meant to be all inclusive nor is it meant to slight the

important work by others such as Marchant, Arthur, Montsoulas, Hunt, AMS,

DOD, etc., but its purpose was to show the underlying problems that have

persisted in the development of obtaining feature positioning on the moon.

2.2 Spacecraft Improvements in Selenodetic Control

A large step forward was taken with the Lunar Orbiter spacecraft

photos starting from 1966 through 1967, for now different perspectives were

available and the problem of the earth's atmosphere could be circumvented.

This made the first real procedure available where the control could be

established away from the center of figure concept of Franz and true inde-

pendent control could be established as discussed in F 29]. The Orbiter photo-

graphy, though not of photogrammetric quality, led to the development of the

excellent series of ACIC charts which provided the first complete and relatively

accurate picture of the entire lunar surface. However, it is not until the

establishment of control points taken in an inertial system from the Apollo series

which is dependent on the lunar motion and lunar datum defined by the center of

mass are the resulting coordinates free from Franz's measurements F22], F30].

The history of the mapping of the moon is covered explicitly in [6] [17].

However, since the Orbiter IV photographs and the ACIC lunar charts were used

as sources for selenodetic control in this project, a word of introduction is

necessary. The Lunar Orbiter series and particularly Orbiter IV which was

8



placed in a near polar orbit provided the first complete detailed imagry of the

lunar farside. Although the pictures were not designed for photogrammetric

work, enough data, especially the orbital information data, was available in

order that photogrammetric triangulation of areas near Apollo landing sites

was accomplished which greatly enhanced the ACIC charts. The series of ACIC

charts includes the first nearside 1:1, 000, 000 Lunar Astronautical Chart (LAC)

based on the 196 fundamental points. This series of 1:1,000, 000 appears to be

the most popular international working scale for reasons described in [91.

The 1:2, 500, 000 Lunar Planning Chart (LOC) was devised by using the Orbiter II-V

information for a positional reference system which related features from the

near side to far side [r4. Ruffin explains in [32] the details of the positional

reference system. He describes the Orbiter spacecraft orbiting information,

the selected frames in matching the control photographed to the near side control

points then extending to the far side regions. The extension was first to areas

of photo coverage then into areas without photo coverage. The misclosures of

the extensions were distributed linearly.

Now Apollo landmark tracking points are available to provide control

in an equatorial region around the moon. The first attempt, procedure and

coordinate results by Apollo 8 are covered in r22]. The addition of a number

of points by succeeding Apollo missions through Apollo 12 is described in [4],

F30], [33]. The reliability of these positions is such that they are now used

for this project and for evaluation of current lunar cartographic work because...

" (1) the Apollo Landmark control points are in a center of mass system,

(2) their values are consistent, (3) the orbital parameters used in their reduc-

tion are superior to previous programs, e.g., Lunar Orbiter, (4) the space-

craft optical sighting technique yields stronger and redundant geometry for

improved solution and reliability determinations, (5) the control points extend

to the lunar backside where no control existed previously, (6) no significant

improvement in accuracy of future control systems are anticipated and (7) these

9



control points are consistent with the Apollo navigation system for which

subsequent operational and mission planning is a primary requirement of

lunar cartographic products." [4] .
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3. APOLLO 15 MISSION

3.1 Summary of Mission

The successful Apollo 15 mission, the first of three flights scheduled in

the Apollo J series and the first to provide mapping quality photographs of the

lunar surface was launched from Kennedy Space Center, Florida at 9:34:00 a.m.

e.d.t. on July 26, 1971. The spacecraft was manned by Colonel David R. Scott,

Commander; Major Alfred J. Worden, Command Module Pilot; and Lt. Col.

James B. Irwin, Lunar Module Pilot.

Each Apollo mission has numerous time categories and two of interest

are the Apollo Elapsed Time and Ground Elapsed Time. The Apollo Elapsed

Time is the time from range zero and range zero is the integral second prior

to lift off. The Ground Elapsed Time is the time monitored from actual space

vehicle lift off. The difference between AET and GET was less than one

second for Apollo 15 [23]. After a GET (Ground Elapsed Time) of 173.5 hours

into the mission the ascent stage that lifted off the lunar surface docked with

the command module. The lunar orbital phase of the Apollo 15 mission was

terminated when the module's position was approximately 1800 longitude, by

the TEI (Trans-Earth Injection) maneuver at 223:48:45 which lasted 141.2 sec-

onds [26]. The path of the orbit as projected to the lunar surface from TEI +

20 minutes to TEI +- 1 hour 42 minutes is shown in Figure 1. The trans

earth coast extravehicular activity began at about 242 hours and the Command

Module Pilot retrieved the film cassettes and examined the SIM (Scientific

Instrument Module). The mission terminated with the landing at a GET time

of 295:11:53 [26].

3.2 Apollo 15 SIM Equipment

The location of the SIM in the Apollo15 service module is shown in Figure 2.
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The SIM contained the Fairchild 3 inch metric camera, the 3 inch stellar

camera, the Itek 24 inch optical bar panoramic camera, the RCA ruby

laser altimeter and equipment for the spectrometer experiments. The SIM

bay was uncovered approximately 4.5 hours before insertion into lunar orbit.

The orientation of the experiments with respect to the lunar surface was

determinted from the spacecraft trajectory and inboard gimbal angles.

The 3 inch mapping camera and the 3 inch stellar camera which were

used for orientation made up the MCS (Mapping Camera Subsystem). The

interlock angle between the cameras was 960 ± 30 [28] . This study only

used the film from the 3 inch mapping camera. The parameters of the map-

ping camera are listed in Table 1. The complete camera specifications are

found in 7 .

Film flattening was accomplished by means of a glass focal platen and

a movable pressure plate. The emulsion side of the film was in contact with

the focal plane platen. There is a 121 square reseau pattern and eight fiducials.

The reseaus are 10 mm apart, 2 mm in length and the line width is .005 mm.

A diagram of the film format is shown in Figure 3.

The complete stellar calibration of the metric mapping camera is found

in [28]. The report was prepared by Raytheon, Autometric, Alexandria,

Virginia under contract to Fairchild Space and Defense Systems (FSDS). The

stellar field calibration was performed at the NASA White Sands Test Facility,

Las Cruces, New Mexico during 25 - 26 March, 197L Certain values from

the calibration report were extracted for use in this study and the details

will be covered in succeeding sections. They include (1) calibrated focal

length, (2) calibrated principal point, (3) radial distortion parameters,

(4) lens distortion parameters, (5) calibrated coordinates of the reseau grid.
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Type: Stationary film

Lens and Aperture: 3 in. f/4.5 (fixed)

Format: 4 1/2 x 4 1/2 in.

Coverage: 74 ° x 740

Film: 5 in., 2.5 mil base unperforated

Altitude: 30 to 80 nautical miles

Film Capacity: 1,500 feet

Cycle Time: 8. 25 to 33.0 sec. /cycle

Exposure Time: 1/15 to 1/250 sec.

Exposure Control: Automatic between lens shutter

Forward Motion Compensation: 12. 1 to 16. 1 milliradian/sec. (optional)
(in five discrete steps: 12.1, 13.1, 14.1, 15.1, 16.1 mill radian/sec.)

Resolution: 90 lines/mm AWAR, 2:1 contrast target EK 3404 film
**

Distortion: + 50 microns radial , 5 microns tangential

Overlap: 78% (nominal) or 58%,, adjustable only prior to installation in spacecraft

Fixed Data:
Reseau
Fiducial
Camera Serial Number

Auxiliary Data:
Coded Time
Altitude***
Shutter Speed
FMC on/off

This study enlarges these values as explained in succeeding sections
**

See section 3. 3. 2 for analysis of computed values
***

Not available for frames for this study

Table 1 Mapping Camera Characteristics
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4. PROCEDURE

The first section of this chapterdescribes the orientation of the visible

portion of the moon and the evaluation of the selected frames taken by the

Apollo 15 metric camera after the TEI. Examination of the selenographic system,

the photo-interpretation of control points and the selectimn of NEC (New Extended

Control) points is provided in Section 4. 2. 1 through 4. 2. 3. The observation and

reduction of these features, the adjustment of the unknown parameters (i. e., NEC

points and exposure station elements) are discussed fully in Section 4. 3 and 4. 4.

4.1 Evaluation of Metric Camera Film

The fourth generation diapositive of the last roll of film taken by Apollo 15

was made available by the Mapping Science Branch, NASA, MSC, Houston, Texas.

This roll contained the frames covering the lighted portion of the surface taken

during the last few revolutions when the spacecraft was in its nominal 60 - 80

nautical mile orbit. Of interest to this project was the sequence of frames taken

when the lighted surface appeared approximately 20 min. after the TEI. It

is this sequence where the moon is receding from view in each successive frame

that was used in attempting to extend control from the known to the unknown

points. Drawings at actual scales of selected frames of this sequence are shown

in Figures 4 - 9.

The problem of orientation of the visible portion of the lunar surface

was difficult. There is only a narrow band of approximately 20 O longitude where

distinct craters can be discerned. The remainder is lost either due to high

reflection or due to complete darkness beyond the terminator. That portion that

is visible is approximately at 85° - 1050 longitude east and is not visible from

earth-based photography. The lunar orientation was solved by examination of

the orbiter photos as described in [18 . There are two features immediately

apparent from this sequence of pictures: 1) the trajectory and thus, the resulting

pictures of the lunar surface are in an area much further to the east and south

17



Range = 1145.8 km

Figure 4. Frame 2753 at TEI + 20 min
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Figure 5. Frame 2765 at TEI + 25 min
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qp = - 270 .81 X= 87 ° . 13 Range = 3337. 0 (km)

Figure 9. Frame 2825 at TEI + 45 min
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than anticipated F271. For example, Mare Crisium, a prominent feature shown

in the pictures in 127], is not even clearly visible in the Apollo 15 frames

because the spacecraft is above an area much further south and east. 2) one

hundred percent overlap is visible almost immediately.

From the roll of film 20 frames were selected for further study. The

guidelines in selecting the frames were as follows: 1) the selection should

commence at approximately TEI + 20 minutes and continue for every few minutes

as indicated in Sprague's original work [331 . It should be noted that this is the

time of the first frame. 2) enough frames should be selected so that there would

be an excess number of observations for the block adjustment program. 3) Sprague's

project r33] showed that the block adjustment program results were not improved

when the number of photos was increased beyond 14 - 16,consequently, the num-

ber 20 was selected to provide an overlap. A list of the selected frames are

shown in Table 2. Frame number 2773 was the first after the TEI. The last

frame, number 2830, was arbitrarily selected because it was felt that the view of

the moon was becoming too small for any practical use in this study. After the

selection, NASA provided second generation diapositives of the 20 frames for

the actual measurements and the resolution was greatly improved.

The information for Table 2 came from the following sources:

Col. 1 - frame number as it appears on the film.

Col. 2 - the time extracted from the auxiliary data block on
each frame.

Col. 3 - this is an approximate number to the nearest minute.
The time of the TEI is subtracted from the time of the
photograph in Col. 2.

Col. 4, 5, 6 - extracted from the Apollo Flight Data Report F25].

Col. 7 - the radius of the moon taken at 1,738.1 km was sub-
tracted from the selenocentric distance in Col. 6 after
conversion to kilometers.

24



(1) (2) (3) (4) (5)
Frame No. Time (G. E. T. ) TEI + - Selenographic Selenographic

hr. min. sec. min. latitude longitude

2753

2756

2759

2762

2765

2768

2771f

2774

2777

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

20. 2830

224

224

224

224

224

224

224

224

224

224

224

224

224

224

224

224

224

224

224

224

8

9

11

12

13

14

15

16

17

18

19

21

23

24

26

28

30

31

33

35

58. 0

59. 0

0. 0

1.0

2.0

4. 0

5. 0

6. 0

7. 0

8. 0

50. 0

32.0

14. 0

.56.0

38. 0

21.0

2.0

44.0

26. 0

29. 0

20

21

23

24

25

26

27

28

29

30

31

33

35

36

38

40

42

43

45

47

- 32? 99

- 32. 89

- 32.75

- 32.58

- 32.40

- 32.20

- 31. 98

- 31.76

- 31.53

- 31.29

- 30. 81

- 30.56

- 30. 08

- 29. 60

-29.13

- 28. 90

- 28.45

- 28. 02

- 27. 60

- 27. 20

119° 14

116. 87

114.74

112.73

110.83

109.04

107.34

105.74

104.22

102.78

100.12

98.89

96.60

94.52

92.63

91.74

90.08

88.55

87.13

85.82

Table 2 Selected Frames of Metric Camera SN - 003

25

1.
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6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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(5) (6) (7) 1 (8) (9)
Frame No. Selenocentric Range to Scale 10 microns =

Dist. (ft.) Surface (kn) approx. (meters approx4
· - i -

9461741.6

9731846. 9

10005413.0

10281993.0

10561192.0

10842660.0

11126086.0

11411197.0

11697749.0

11985528.0

12564023.0

12854421.0

13436853.0

14020743.0

14605387.0

14897813.0

15482583.0

16066927.0

16650539.0

17233177.0

1145.839

1228.167

1311.550

1395.851

1480. 950

1566. 743

1653. 131

1740. 033

1827. 374

1915. 089

2091. 414

2179. 928

2357.453

2535.422

2713. 622

2802.753

2980.991

3159. 099

3336.984

3514.572

1:15,000,000

1:16, 000,000

1:17,000,000

1:18, 000,000

1:19,000,000

1:21,000,000

1:22,000,000

1:23, 000, 000

1:24,000,000

1:25,000,000

1:27,000,000

1:29,000,000

1:31,000,000

1:33,000,000

1:35,000,000

1:37,000,000

1:39,000,000

1:42, 000,000

1:44,000,000

1:46,000,000

150

160

172

184

195

206

218

229

240

252

275

287

310

334

357

369

392

416

439

462

Table 2 Selected Frames of Metric Camera SN - 003 (con't)
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2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2753

2756

2759

2762

2765

2768

2771

2774

2777

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

---- IF-I--T-

III



Col. 8 - this is a rounded number computed from

f 76 mm
scale- -=h Col. 7

Col. 9 - this is a rounded number computed from

76 mm = range (Col. 7)

1 0 p x

10 MX

f 1X>10"~~~~~~~
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It is merely a guideline to show what 10 microns on the film represents on the

lunar surface.

Examination of the selected frames and the data in the Table 2 indicated

several problems: 1) the scale is much smaller than any conventional map-

ping project, 2) it is apparent that the spacecraft is not traversing across the

lunar surface as in the case of normal strip photogrammetry but appears to

be coming straight out of the large prominent, dark center crater Jenner in

Mare Australe. This near vertical trajectory provides very poor geometry of

intersecting rays at the nadir region of the photographs. An indicator of good

or poor geometry in photogrammetry is the base-height ratio and trouble is

usually predicted when the base-height ratio is < .3 r10]. In this case the

horizontal base is very small compared to the altitude and for all practical

purposes the ratio is nearly zero, (approximately . 04). The geometry of inter-

secting perspective rays from the exposure station is further compounded by

the fact that the known control is grouped very closely together on the northern

or upper limb and the selected unknown points range mostly in the southern

area. This grouping of control in a small area coupled with large altitudes

provides a very narrow cone for the intersection of rays in solving for the

exposure station.

4. 2 Selection of Control and NEC (New Extended Control)

4. 2.1 Selenographic Coordinate System

The selenographic coordinate system as used here is not what some

literature describes in the catalogues as the 'true' coordinate system but

rather is the dynamical coordinate system. It is fixed to the lunar sphere with

its origin at the center of mass [ 12] . This system is shown in Figure 10.

It is right handed with the X axis positive towards the earth, the Z axis is lying

on the rotational axis of the moon with positive to the north and the y axis com-

pleting the system [33].

The selenocentric coordinates may be obtained from latitude (e0), longitude

28
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Selenographic Coordinate System Fixed to the Lunar Sphere
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(X) and radius (R) by the following.2]:

Xc = R cos p cos X

Yc = R cos (p sin X

Z, = R sin (p

The selenographic coordinates being center of mass oriented may be obtained by

an appropriate origin shift in kilometers along the selenocentric axes F33] so that

the transformation becomes:

X = R cos p cos X - 2.5

Y = R cos p sin X + 1.0

Z = R sin (p- .5

From [33] the moon's radius in this report is also taken as 1738. 1077 km.

4.2.2 Visible Lunar Control

Photointerpretation or identifying known points was accomplished by

examination of other photographs with the points indicated. The known control

identified and used in this project were of two types: 1) ACIC control and

2) Lunar Landmark Control.

NASA's Mapping Science Branch provided the enhanced Orbiter IV

photographs of the frontside and eastern limb listed in Appendix I with ACIC's

196 fundamental and 89 additional identifyable control points circled F3] . Due

to the attitude of the Apollo spacecraft there was only one control point, ACIC

#69 on Orbiter IV photo 185H1, identifyable on the Apollo 15 film.

Fortunately,additional pictures were available of the Lunar Landmark

Control r22] F301[33]. In the 'window' of visible features on the Apollo 15

film three of these points were discernable. Three points were not visible in

the first seven frames consequently the measurements began with frame

number 2774. The following Table 3 shows the control used in this study. The

source for points 1 and 2 is F30]; for point 3 which is a feature tracked by Apollo 14,

the latitude and longitude were supplied by NASA; for point 4 1] .

30



Frame Name (aep X a R (km) a R (km)
No.

1. F - 1/10 1? 8722 ° 0203 88?2532 ° 0104 1733. 007 .378

2. CP - 3/8 - 8.8990 .0145 96. 8915 .0226 1735. 374 .430

3. Ansgarius -11. 633 * 81. 068 * * *

4. ACIC 69 -18. 478 .013 62. 113 .034 1736. 130 .540

* not available

Table 3 Coordinates of Control Points

The above coordinates were converted to selenographic X, Y, Z coordinates

and are listed in Table 4. The standard errors (C) were calculated by the fol-

lowing propagation or error [13] r 35] . Since no correlation was provided the

p, X, and R covariance terms are omitted. The resulting covariance terms

between X, Y, and Z are also neglected, since only the standard deviation (a)

is required for the diagonal weight matrix which is used in the adjustment.

The weight matrix is discussed further in Section 4. 4. 1.

X = R cos (p cos X - 2.5

Y = R cos p sin X + 1. 0

Z = Rsin(p - 0.5

2a = p)2 ( ax\2
ay = ('a9D 2 (ay l

2 (o\ ~6,\: k, ] -,a,

+ ±<yx a2R )(aR)

/ x\
2 /ay\ 2 2 bY.

2

+ (--)2g ') + R2 (:ay)2

+ a 2 !_R/
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Where:

R (- sin p) (cos X)

R (cos p) (- sinX)

(cos S°) (cos X)

R (- sin p) (sin X)

R (cos (0) (cos X)

(cos p) (sin X)

R (cos p)

sin p

* assigned based on radius of 1738. 11 (km)

Table 4 Selenographic Coordinates of Control Points

32

Point Name X (km) oa (km ) Y (km) ay O(km) Z (kn) Oa, (kn)
No.

1. F - 1/10 50. 2985 .3145 1732. 2770 .3783 56. 1178 .6138

2. CP - 3/8 - 208. 2202 . 6734 1703. 0977 .4348 - 268.9505 .4390

3. Ansgarius 261. 8195 .600 1682.7634 .600 - 350.9761 .600

4. ACIC 69 769.6745 .8912 1456.4050 .6537 - 550.7500 .4109

ax
a<p

ax

2X
ax
aR

aY
acp

aY

aY
aR

(Zaz
acp

az
aR



It is important to remember that the above control points are the only control

points available for this block adjustment, consequently any solution is due in

part to this fact.

4.2.3 New Extended Control (NEC)

The points whose coordinates were desired were selected at the time of mea-

surement. The following seven points were selected because 1) they were small

circular features easily identifiable on all measured frames and because of their

distinct location they should be easily located on photographs of the same area

on succeeding Apollo missions, 2) their general location can be identified on

ACIC's Lunar Planning Chart LOC - 3, Lunar Polar Chart LMP - 3, Lunar Farside

Chart LMP - 2, 3) it was desired to have at least one feature within the bracket

of four reseaus. Diagrams of these points at eight times enlargement from

frame 2780 are found in Figures 11 - 16. Table 5 shows the coordinates'

approximate positions as extracted from the above mentioned charts.

table 5 NEC Coordinates
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Point cP X
No.

11 - 4?4 93°%

12 -33.5 96.2

13 -41.3 97.6

14 -39. 7 84.5

15 -50.8 82.0

16 -56.2 90.4

17 -36. 8 99.1
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Figure 11. Approximate Coordinates of NEC No. 15 (p = -50.°8 X = 82°0
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fNP

CRATER
JENNER

RIM

Figure 12. Approximate Coordinates of NEC No. 13 cp = -41°.3
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NEC #12
NP

Figure 13. Approximate Coordinates of NEC No. 12 (above) (p = -33?5 X =96 °2

NEC No. 17 qp = - 368 X = 99.°1

36



Figure 14. Approximate Coordinates of NEC No. 16 p = - 56.2 X = 90?4

SHADOW
AREA

INP
CRATER

'MAR INUS

Figure 15. Approximate Coordinates of NEC No. 14 cp = - 39.°7 X = 84.5
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Figure 16. Approximate Coordinates of NEC No. 11 p= -4°4 X = 93°3
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These coordinates were reduced to selenographic coordinates and are shown in

Table 6. The computations included the use of the moon's radius as 1738. 1077 km.

Table 6 NEC Selenographic Coordinates

Based on the accuracy of the ACIC charts a standard deviation of 20 km was

assigned to each of the above NEC points.

4.3 Observations and Reduction of Observations

4. 3. 1 Observations of Photo Coordinates (AP/C)

It is fortunate that Mr. Lloyd Herd and Mr. Neal O'brien of the Aerial

Engineering Section of the Ohio Department of Highways made available their

department's AP/C (Analytical Plotter/Commercial). The AP/C is a first

order measuring instrument manufactured by OMI (Ottico Meccanica Italiana,

Rome) with a least count of one micron. In a test for stability of an AP/C by

Toglatti and Solaini a standard deviation of coordinates of ± 2 ul was obtained

39

Point X (km) Y (km) Z (km)
No.

11 - 102.2576 1731.1115 - 133.8459

12 - 159.0325 1441.9059 - 959.8259

13 - 175. 1975 1295.3074 - 1147. 6540

14 125. 6745 1332.1426 - 1110. 7473

15 150. 3865 1088. 8441 - 1347.4370

16 9. 2502 967. 8781 - 1444.8405

17 - 222.6177 1375.2404 - 1041.6675



with calibration plates [34]. The AP/C consists of a stereo comparator built

by the Nistri Company of Italy with an on line computer built by the Bendix

Corporation. In this project the AP/C was used as a comparator with the computer

serving as a digitized readout function. The observations were made in stereo

by increasing numbered pairs of photographs. The AP/C does not have a 'zoom'

lens feature but the scale difference between pairs of photographs is within the

eye accomodation range of 10 - 12% [10]. Table 7 shows the photo frame and

the feature whose coordinates were recorded.

It can be seen from the table on the following page that the number of

measurements/frame is generally decreasing. This is due to two interrelated

causes. As the moon is receding from view fewer features can be discerned

due to scale, resolution and altitude and there are fewer features surrounded by

four visible reseaus.

Each point or feature was measured four times on each frame and each

of the four bracketing reseaus was measured once for a total of 1728 measure-

ments. Four reseaus are required for the reduction process covered in the

next section. Examination of Figures 4 - 9 show that some features that could

be selected for measurement are lost when the surrounding reseaus which are

black are lost in the blackness of space or the blackness near or beyond the

terminator. The use of the fiducials or reseaus for determination of film

shrinkage and lens distortion is a clear cut procedure when the entire diapositive

film format shows contrast of the lighted surface and black fiducials and/or

reseaus. In this project the fiducials are completely unuseable and only certain

patterns of four reseaus are useable.

An interesting and unexpected facet occured during the observations.

Control points 1 - 3, the Lunar Landmark craters were tracked by the Apollo

astronauts while the spacecraft was in a 60 - 80 nautical mile orbit. These are

relatively small features (250 - 1,500 meters [301 ) and easily discernable at

that altitude; however their locations are not as clear during the time span of the
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TEI photographs when the altitude is increasing from 1145 km to 3500 km. In

fact this is approaching the limit of the film resolution and surface detail and

this coupled with the shadows, made placing the measuring mark in some cases

a judgement decision based on the placement in the previous pair of photographs.

Control point number 4, an earth-based control feature is a crater whose appear-

ance is extremely large. The placement of the measuring mark can 'swim'

several microns, (i. e., there was a range of 12 p) inside the crater walls, not

only on each pair of photographs but also on each repeated measurement. On

the other hand, the features selected for extending control are clearly visible

very distinct features approximately the same size as the measuring mark

(20 g) and thus these NEC points were easier to measure. An analysis of the

observation residuals shows that the pointing precision in planimetry for the

control points was 16. 53 Mt compared to 12. 77 U for the selected NEC points.

Admittedly there were fewer measurements on the control points, 38 compared

to 70, but the results are justified when the film is examined.

4. 3. 2 Reduction of Observations

The measured coordinates were processed by a modified TRANC 4 program.

The details and a program listing are given in Appendix II. The program trans-

forms the coordinates from the comparator system to coordinates in the cali-

brated reseau grid system through an affine transformation. The source for

the calibrated reseau was [24]. The general affine transformation for which

the coefficients are solved for is (see [2]):

x = AO + Ax' + A2y'

y = BO + Blx' + B2y'

where:

x', y' = photo coordinates

x ,y = stereocomparator coordinates

AO, BO = origin shift
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Al, B1, A2, B2 = coefficients solved for by
least squares adjustment of
the 4 (x) and 4 (y) comparator
coordinates of the bracketing
reseaus.

These coefficients are then used in solving for the coordinates of the object

point. The four observations on the object are averaged and the coordinates

are solved by a back solution in the transformation as shown in Appendix fH.

= A2 (y - BO) - B2 (x - AO)
A2 · B1 - Al · B2

(2)
, B1 (x - AO) - Al (y - BO)

A2 * B1 - Al * B2

Each point within a reseau is handled in the same manner and the results are

shown in Plates 1 - 6.

The program computes for each point the unit standard error

aVV =JET2 + E,2

where: E, and Ey are vectors containing the residuals in x and y. These are

the differences between each (x, y) comparator coordinate from the

general affine transformation (1) prior to adjustment and the (x, y)

observed comparator coordinate

n = number of observations (8)

u = number of unknowns (6)

The last column in Plates 1 - 6 show the result of the computation of the standard

error of the mean for x and y computed from

v= =I /Vr V, + V V
as(nn /n (l-2) v n (n - 2)

where: Vx = (x -3) and V, = ( y- yY

x = x average and y = y average of point observations
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JO NUMBER 10

PHOTO COORDINATES CORRECTED FnR LENS ANU FILM DISTURTIUNS (FAIRCHILD MAPPING CAMEKA 6J03 J

PHOTO POINT
OINIT STANDARD ElRROI)P (IM)

X (MM) Y (MM) AFTER AFFINE TPANSFORMATION
STANDARD LERDR (If MEAN OF x AID Y
ON THE OBJECT SPACE POINT IMR'

2774. 1.
2774. 2.
2774. 3.
2774. 11.
2774. 12.
2774. 13.
2774. 14.
2774. 15.

2774. 16.
2774. 17.
2777. 1.
2777. 2.
,7r7. 3.
2777. 11.
2717. 12.
2777. 13.
2777. 14.
2777. 15.
2717. 1[.
..2?. _ ._ ..

4.'.,4e:Z -7.0753 0.ot),23-O2 U,.21 u'W-20
t. 7!541 -'1.10d7 0.41231U-02 0.1513P0-02

46.5731 9.6612 0.509900t-02 0. 250OD- u2
42.t's7 -7. 2 27 0.q00)()D)-02 i.;O(1 7j-);

t. 6(h00) S. '* 1'1? l). ( I 'tI-UZ o. I D.)-O2
Y9.149 22.7033 0. 11420)-02 0.2q7f, o-0?
17.87s2 21).4370 0. 70711D-u. 0. ?..D-02
7.2 .0, 37.T9I4 O.22 -1r-k)? _O. [ _(il_ )-O

-I ... . ... .- -2 .. ·b :2. b 0. '-?3j 
11 .dobt 15.774, 0. 2.?5is,95r-02 ).2,-
4J.t5 ',t -. ,,U 0. 20L)0)o)-L)02 O. 07 -. )-I )
3? .44., -7.; '77 U.17 1}-0. U15!?' )-02
4ti.dO ) 8.548bH 0. 12510O-J) I . 4 1 , 3V- ]2
37. 5*b -7.,170 U. ,4 ')S1:-,)2. U. _,) 7 ,)-)?

. :0l t 14.7 Lq ,,,r{ 0~. 
'
o -j)0JOOI-tJ2 'J- .. ! ' d';>.)-Jd

o.A7 > 2').)hoZ O.58310D-02 0.292 2 )-J2
14.5bs . 27.39J5 0. 1511 0n-1)? ')-.)Z
4.b')47 3 1.' 515 U. 7141:7L0-0O? 3. I4 " ? I)-0?

_J ~.J jL)).-___~~--! 0. 4-U 3 t)-o1 o.25)!45)-;>

Plate 1: Results of TRANC 4 for Photo Frames 2774 and 2777

JCB NUMBER 10

PHOTO COORDINATES CORRECTED FOR LENS AND FILM DISTORTIONS (FAIkCHILD MAPPING CAMLRA i003 I

PHOTO POINT
UNIT STANDARD ERROR (MM)

X IMMt Y IMMI AFTLR AlFINE TKANSFORMATION
STANDARD ERROR OF '4EAN OF X A'JD Y

lIN THE OBJECT SPACE PDIINT (M4)

1. ,34,.5767 -7.1657
2. 21.J351

11. 33.40O3
12. 10.0)56
13. 4.1758
14. 11.-716
15. 2.1674
lb. _ -5.5054

1. 33.-44

2. 2?.t,')4
11. 21.,,20
12. 5. .52A
I3. 0. .'50
14. 7.,J3 2
15. -1.4.277
16. -o.,395

7.2504
-7.3966
12. b7 
1 9.5253
25.b7 2
33. ,'59

31.9263

-7. -1 30
-7. du5
11.J423
17. o 55
23. )'19
31.O940
2V.55q!

0.10000D-02
0.412310-U2

0.452770-02

0.5831 01-02
0.223610-02
0.4'4) D-02
0. 05540-02
U.70711D-03
0. l',

0.b670M01-_02
O.L25'300-JE

O. O s ,D-02
O. oI3 bUJ-0l

0. 140,Hg-u2
0.717470- 02
0.1773'6D-)-
0.10704U)-0
-. I1 1 1i.)-02
0.22i,27n- 02
0.152 15 )-J2
_ _ _:_0. 27' 5)-J?

0.!7 13 )-02
I). I 1I ,, )-1 :
0.14 '0:)-02
0. 12 2 I ? ' 7)-J? _

0.j 15 5)-02

Plate 2: Results of TRANC 4 for Photo Frames 2780 and 2785
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2780.
_ 2780.

2780.
2780.
2780.
2780.
2780.

_ 270J.

2785.
2765.
27tu.
2765.
27R5.
27D5.
27 5.
27T5.



JCB NUMBER 10

PHUTO COORDINATES CCRkECTEO FOR LENS AND FILM DISTOIRTIIONS iFAIRCHILD MAPPING CAMLN4A 00 I1

PHOTO PUI

2790.
2790.
27o0.
2790.
2790.
2 790.
27 0.
2790.
2795.
27s5.
27q5.
2795.
2 7-i5.
27S5.
2795.
27S5.

UNIT STANDARD ERROR (MM)
X (MM) Y (MM) AFTER AFFINE TRANSFORMATIONINT

1. 29.d579 -21.4213 0.300000-02
4. 27.6834 q.7t,33. .3h2'n-02
1i. 3..d51r -21.78d8 0.2d2tJ40-02
12. 2.151d -4.27Y7 0.35255D-02
13. -2.q035 1.3773 0.154110-0?
14. 3.2HZ:,, u.4'J19 0.72O1llJ-UZ
15. -.. 215)9 13.lc15 0.41231t)-02
17. -2.0145 ___-3.9572 0.447210-02
1. 24.1349 -21.91 ,43 0. 13J5040- 
4. 22Z.40f U c.5007 O.1 H02t)-01

11. 1. 3452 -22. 30* 0.14 7b,1i-01
12. -2.0iuo -5.q52C 0.63.4ulj-J2
13. -:.u (, 3 -U. 50 6 O. lboO'-)-U1
14. -O.d117 4.2532 o.2l155D-02
15. -7.71t3 l0.7053 o.6olo-
17. -,.9562 -5.60uq 0.777-2UD-02

STANOARr) ERROR OF MEAN OF A AIJD Y
UN THE UHJECr SPACE POINT (MM)

0.217470-02
0. 17U 17;)-J2

0.14361:-0U
O. 139,4;)-02
0 . "i, 1 7?-)2
0.911977 -02

0.14 1, U-J2
0. 17110-02

O. l ; 3.17)- 92
0.1 1 .4)-92

J.2 U4 12 )-02
U. 17U769-02

). 14u,&jS-02
I). l'i !O-02-

Plate 3: Results of TRANC 4 for Photo Frames 2790 and 2795

JOB NUMHFR 10

PHOTO CUURUINATES CORRECTED FUR LENS AND FILlM DISTORTIONS (FAIRCHILD MAPPING C4ERA f003 )

PHOTO POINT
UNIT STANUARD ERROR (MM)

X IMM) Y (MM)HI AFTER AFFINE TRANSFORMATION
STANDARD EkPRR OF MEAN OF X AJiD Y

ON THE OBJECT SPACr. PIl'JT I(M4).

2800. ,. 19.ho09 -23.4031 0.3b079C-02 0.147200-02
2800. 2. .9.95Pd -23.70i4 0.632460-02 0.2541303-02

-728(. 41h ~q- 922d00. 3. 1,.728;0 -11.Et0S5 0;2f1214D-02 O.41'WO-92
2800. 4. 18.6205 3.6844 0.141420-U2 o.1547hJ-02
2e00. 11. 14.33',2 -23.7790 0.43012D-02 0.37h321j-0J
2600. 12. -5.0431 -R.2753 0.430120-02 0.25,,179-02
2o00. 13. -9.3058 -3.16,9 . 514780-o2 O. 11640-02
_ 2800. 14.. _ -3.7510 1.4165 0.360560-02 '._17T)-r2

2600o. 15s. -ij.1430 7.7~8 0 3..4123!D0-2 O.1JO0[-02

200o. 16. -1 .7'402 o.c345 0.15110D-02 
2800. 17. -3.7123 -7.q428 0. 2q550-02 0. 240:-:-02
2805. 1. 16. i l1 -24.74117 0. 15 1 ,I O1.14 /; O. )-02
2Z05. 2. 7.140' -£2. 0'4 0. 1?21LID-U2 O.254L13 ;-02
2-260o. 3. -.. 853 -1.3.718 .0.91771)-02 _ _ 0 

285. . 4. 145.7dl9 . 4' 0.35 D-O2 I 5.' 7 , .)2
2805. 11. 11.3c12 -25.l 112 0.75 Lf:Dn-)2 U.:7i I- Z0

2FJ05. 12. -7.0 9)0 -10. 3!it2z 0.223'11P-OZ02 0.2 ';, 71- )Z

285o. 13. -11 . 10 1 -. U.,',4 .o t,' tJ-,)1 0 .21 ! 4")-O
2eO5. . 04 -. )4 -1o9 0.704370-!3 0. 1707,i7)-0Z
2805. 15. -11 . 715. 4.. _ 5.-... ...-;)0 02 0. 100,)0)-)2

2805. lb. -17.J25. 3. s72 0. 10o1570-0? 7.i 1 -J?
2805. 17. -1..:,71, -lO.,)l0 5 0.ot542?1- J.1 0.234i(, J-02

Plate 4: Results of TRANC 4 for Photo Frames 2800 and 2805
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JOH NUMBER 10

PHOTO COORDINATES CORRECTED FOR LENS AND FILM DISTORTIONS (FAIRCHILD MAPPING CAMFRA 3003 I

PHOTO POINT
UNIT STANDARD ERROR (MM)

X INM) Y iMMI AFTER AFFINE TPANSFORMATION
STANDARD EHktR' UF MEAN (F X A'10 Y
UN THE OHJtLT SPACE POl4T (t44)

2810. 1. 13.7244 -25.0866 O. t,6700D-2 U.14t-49U-02
2810. 2. 4.2680 -25.5883 0.412310-02 0._ _ __ _____ .I..583l.-)7 _ _-02
2810. 3. 10.4520 -14.e6o3 O. 15lID-02 0.36372!0-02
2810. 4. 12.4905 -. 3 31P .:'540L-n-02? U.2I.f IJ- )2
210. 11. d.J751 -25.5461 0.632460-02 0.299500-02
2810. 13. -13.2865 -7.174q 0.447710-02 O.1201760-0
2810. 14. -.. ?2780 -2.9325 0.441210-0? 0. I
2F10. I_ 1. - -13.' 14 j 2. 1,'2 . .. U..15I111)-U2 0.10_039-u- 02
2810. 16. -13.9352 i.91 72 O.50UOD-O0 O. 11 .)-32
2PI5. 1. IU. )05' -£b.5228 0. 3 5 35 51,-07 0.140~4'0:-02
2815. 2. 1.7242 -2.9 )28 0 O. 707l- 12: ,
2d1 . J. 7.117d -!5.5o72 _ 0.761 5'1J-02 0.36372D-02
2815. 4. 9.J134 -I.~OJO o. ,'ino l-02 0.2 o3, f'-o0
ZY1-. 11. 30 .:Sd'? -2 3. ._s ?7 O. Z 4'..)- ]U2 O.1 ] 97)-/)'2
2 .I . ... l ----13. -I./ -'. O. 1 0 -O '.. l.i J t-O2
2815. 14. -IJ..Ilt -4.3345 O.9192,1)-02 O.l 1c)-.0
2Rlq. IS. -1.s0- 1 I.. 3o":, .'- .3 U.IJ'')- -U.
281i. 16. -2'.1 P1 4.', 'q 0.14 1 4,f:-01 O. I L',U-

Plate 5: Results of TRANC 4 for Photo Frames 2810 and 2815

JCB NUMBER 10

PHOTO COOkDINATES CORRECTED FOR LENS AND FILM DISTORTIONS (FAIRCHILD MAPPING CAvERA 4003 I

PHOTO POINT
UNIT STANI)AIPD FkROR (!*4)

X (MM) Y (MM) AITER AI-FINE TkANSFUHMATION
STANDA40 ERRO' OF YEAN OF X ANOI Y

UN THt UbJECT SPACE P(JlNT (MM)

I. d.1216
2. -0 .7 tO
3. 5.0697
4. 7.4.06

11. 3.0431
13. -16.0204
14. -11.9538
15. -16.921l
1. 5. It5
2. -2.9410

4. 5.1104.
11. J./uLi

13. --d.16l 7
14. -1 3.235
1I. -1d.4235

-26.1331 0.Z23o10-1)2
.-2. 521 _..._ .171.1U-3
-16.5938 0.380750-02
-3.3352 0.40000D-02

-26.5170 O.2?7311)-02
-q9.555 0.!51 !U -U?
-5.7106 0.241550-02
-0.2215 0.282840D-02

--. t,. ', ~.~:) 0.,'. 7?d" [i-I
-26.9825 0.H51470-J2
-17* 4li7;* 1.)i .
--40.ou14 0*. 10,)0D-02

-icl. 9,11)z U.414.2bo-U2
-10.7d03 _ __ U0.134010-01

- 1.*, 1',5 . 7( .',I')-U2
-1.7 741 0. 8 21650-02

Plate 6: Results of TRANC 4 for Photo Frames 2820 and 2825
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2820.
2P20.
2820.
2820.
2820.
2 20.
2820.
2820.

2825.
2825.

2d25.
2825.
2825.

U.' 70953-03
0.4ui717)- )2
0.317 1;)-02
U.;51 3):)-02
O.1 *'.78)-:)?

I. 1o7(;4)-,)2
U. 12 I,0h.- )2

0. 4t' , )-J
{0. l rIi'- J

o. i dj.7t,- )2
O. 1 l .~ 9-')



The program also computes the distortion parameters in a separate

subroutine. The radial distortion ( Ar) and the tangential distortion ( At)

are represented by the basic distortion equations [2] [51 [211. Radial dis-

tortion is represented by an odd power polynomial in terms of r, the radial

distance from the principal point [21] [28].

Ar = Kir3 + K2 r + K+3 r

where the K terms are extracted from the calibration report [28 ]

K1 = - 0. 13361854 x 10 5

K2 = 0. 52261757 x 10-9

K3 = - 0.50728336 x 10I 3

The x and y components of r are:

r (x' ) = (K r2 + K2 r4 + K3 r ) (x')

wry, r r( ) = (KI ra + K2 rm + eK3 rs) (y')

where x' y' are the measured coordinates [21] 28] . For these measurements

the radial distortion ranged from .8 AM to 44.4 / and averaged 15.48 A/. This

is within the 50 /A distortion range established by Table 1. The radial distortion

is positive outward as shown on the radial distortion curve in the calibration

report [28] and the correction was applied with opposite sign.

The tangential distortion is represented by an even powered polynomial

"thin prism" model as developed in [5] [21] [28].

At = Ji r2 + J2 r4

where the J terms are extracted from the calibration report [28].

J, = - 0.54958195 x 10
TM

J2 = - 0.46089420 x 10 10
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The x and y components are

Ax t = - At sin cp = - (J 1 r2 + J 2 r4 ) singp o

Ay t = - At cos (P o = (Ji r 2 - J 2 r 4
) Cos p o

where

(P o = 2.9459070 rad, the angle of maximum tangential distortion [28].

The corrected image coordinates are then represented [21] [28].

x = (l + K r 2 + K2 r4 + K3 r6) x - (J lr + J2 r4) sin po

y = (+1 + K 1 r 2 Kr 4 + K- r6 ) y' + (J1 r2 + 2 r 4 ) cos (p

The coordinates provided are used in the FORTBLOCK adjustment.
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4.4 Block Adjustment Program

The FORTBLOCK block adjustment triangulation program performs a

simultaneous least squares adjustment on the estimated parameters (i. e.,

elements of exterior orientation and survey coordinates) based on the obser-

vations of photo coordinates, interior orientation elements and the collinearity

condition. A complete description of the theory is found in [5] [21] [33].

The program provides adjusted values of the parameters, standard deviations,

residuals, correlation coefficients and variance - covariance matrices. It

was designed for use in conventional earth-based strip and block aerotriangu-

lation problems where the control is distributed along strips and around the

perimeter of the block, however, the program was modified for this project.

The strip and block in this case is a sequence of 100 % overlapping photo-

graphs of the same area receding from view with a very small horizontal base.

The collinearity condition states that a point in the object space, the

nodal point in the camera lens and the imaged point all lie on a straight line.

This is represented by the following equations:

AXR
x - Xo C AZR

AYR
y - Yo AZR

where x and y are the photo coordinates corrected for distortion; xo and yo are

the translaticn to the principal point; c is the focal length; AXR, AYR, AZR are

the survey or selenographic coordinates in the right hand cartesian coordinate

system rotated to the photo system [2] [21].

4.4.1 Input to FORTBLOCK

The FORTBLOCK program requires the following input: a) observed photo

coordinates, b) calibrated focal length, c) estimated values of the selenographic

coordinates for each control and NEC parameter, d) estimated values of the
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elements of exterior orientation parameters, e) weights for the photo obser-

vations and estimated parameters.

The source for the photo coordinates was described in Section 4.3.2. The

calibrated focal length was extracted from [281. The source of the control

and NEC points was covered in Section 4.2.2.

The six elements of exterior orientation are Xo, Yo, Zo, x, ID, w

These provide the location and attitude of the camera and in this case the space-

craft when each picture was taken. The positional elements can be estimated

by using the latitude, longitude and geocentric radius listed in Table 2.

The rotational elements which are used in rotational matrices can be described

as those angles necessary to rotate the selenographic axes into alignment with

the photograph axes so that vectors in the object space will correspond to

those in the image space. Figures 17 - 19 show the descriptive geometry used in

estimating these angles.

P Y z

X
Xo

Figure 17a. Plan View Of

ao -- tan-' Yo
Xe

x

P

(right hand rotation in a right
coordinate system)

z

y

X

handed

Figure 17b. Perspective View Of

Primary Rotation
50



The first rotation or primary rotation is a negative W about the X axis which

aligns Z into the camera y z plane. This rotation is by an amount IT/2 plus

an additional amount equal to the latitude of the camera /.

x

P

z

V Y
camera coordinate

system

90 - a!

X

selenographic coordinate
system

(D

Y

(right hand rotation in a right
handed coordinate system)

Figure 18. Secondary Rotation

The secondary rotation is a negative (p rotation of 90P - a about the once rotated

Y axis in order to align the Z axis with the z camera axis. This is shown in

Figure 18.
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x

z

P~ y

camera coordinate

X

selenographic coordinate
svstem

Y
(right hand rotation il a right
handed coordinate system)

Figure 19. Tertiary Rotation

The tertiary and final rotation is a negative x rotation about the twice rotated

Z axis by an amount 90 - · as shown in Figure 19.

In summary, Table 8 shows all the estimated values of the exterior

orientation used in the adjustment. The last required input, the weight which

are the constraints are computed separately for observations and parameters.

The weights are derived from the inverse of the standard deviation squared.

The standard deviations (a) are extracted from external sources or estimated [35 1.

In all cases the a-priori value of the variance of unit weight is assumed to be

unity. The standard deviation for all photo observations was 10 A1 consequently,
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Table 8 Estimates of Six Elements of Exterior Orientation
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Frame
No. Xo (km) Yo (kin) Zo (km) x (rad) P (rad) W (rad)

2774 - 804.74 2846.42 - 1831.25 - 1.020 - .276 - 2.125

2777 - 749.04 2944.97 - 1865.04 - 1.020 - .249 - 2. 121

2780 - 693.07 3043.49 - 1897.85 - 1.024 - .244 - 2. 117

2785 - 648.68 3619.24 - 2193.62 - 1.033 - .177 - 2.109

2790 - 585.46 3725.97 - 2227.87 - 1.037 - .156 - 2.104

2795 - 457.95 3935.33 - 2295.69 - 1.046 - .116 - 2.096

2800 - 329.92 4140.76 - 2360.69 - 1.054 - .080 - 2.088

2805 - 266.48 4242.10 - 2392.10 - 1.058 - .063 - 2.083

2810 - 137.46 4441.84 - 2454.20 - 1.066 - .031 - 2.075

2815 - 8.99 4651.33 - 2489.84 - 1.079 - .002 - 2.062

2820 119.82 4831.23 - 2572.83 - 1.082 - .025 - 2.060

2825 184.22 4926.63 - 7601.51 - 1.085 - .037 - 2.056



the corresponding weight was:

1 1
W = = (.010 mm 2 10,000

The standard deviations for the control points came from Table 4. The

standard deviation for the NEC points was assigned 20 km and was based on

the ACIC charts used in estimating the longitude and latitude. No constraints

were placed on the estimated elements of exterior orientation. The symplifying

assumption is made that no correlation exists internally between control points,

exposure stations and photo coordinates.

4.4.2 Results of FORTBLOCK

The FORTBLOCK adjustment program iterates internally three times

and this is considered sufficient for most cases (i. e., normal earth-based

aerial photography). There are a number of guidelines available on the number

of iterations required [21] . "The number of iterations required will depend

on how well the initial approximations are selected, the geometric strength of

the triangulation, and the total number of parameters in the problem" [2].

Due to the unusual conditions of the receding photography the six and twelve

photo block adjustments were iterated three times and then also for an addi-

tional three times. Six iterations were considered sufficient since only small

differences were detected between the standard deviations of the control and

NEC points on the third and sixth iterations (Tables 9 - 12).

To save space only one set of the FORTBLOCK output, the 12 photo block

with six iterations, is shown inPlates 7 - 23. This adjustment with 12 photos

provided the greatest number of observations, the greatest number of degrees

of freedom and the lowest standard deviation for the adjusted NEC points, con-

sequently, this solution was selected as the most favorable.

The succeeding tables (Tables 9 - 12) present a summary of the output for

the NEC points. It should be noted that the column headed 'Residuals' are not
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APOLLO 15 MISSION
* ...JOB ... NUMB£R ....._ __ __
DATE 20 APR. 1972

TIME 21:2q:17.3
NUtMaER OF PHOTOS = 12

DE'CPEtS OF FREEDOM = 144
UNIT STANUIARN ERROR = O.15c5)60+01

Plate 7: FORTBLOCK Output Listing for 12 Photo Block Solution; Title Page



RESULT S
EXTERIOR URIENTATION

PHOTO NO. 2774 X0 (METERSI

-787125.754

STO.ERROR 0.51710.04

RESIOUALS -0.i761L.05

WEIGHTS U.000UOUUUO

YU (METERS)

2852024.756

0.55570+04

-0.5C50U.04

o0.OOOUUUU

10 IMETERS)

-183s426.555

0.41340+U04

0.81270+04

O.000UUUOO

KAPPA IRA,.l

-0. 54909n+00

0.12270-02

-0.16510n00

0.000000000

PHI IRAD.)

-0.7507710-01

0.26610-02

-0.20090+00

0.000000000

OME5A (RAI.)

-0.207s910101

0.27370-32

-0. .03373-0

0.000020300

VARIANCE/COVARIANCE MATRIX

0.267361J.R8 0.)9d07lTU? -0.5S9170LU+ -0. 172740+01 0.13185D02 0.894080+00

0.99e!07D-07 U.30510U+.8 0.e9O1q9007 0.497920100 0.66890D+01 0.13441)-02

-0.51,170.J57 0.+919i0n-o7 0.!70s670'I 0.230305o01 -0.30911D001 0.P2vb)OD+1

-O.17174Ll.1 0.497920.00 0.2303s5001 0.150630-05 -0.367410-06 0.4440)D-06

0.131850n+2 0.66RAO)el -0.309110+01 -0.367410-6Ob 0.708250-05 0.721920-06

0.1940 0.0J 0.114q40).00 O.R?60D)*01 0.4444UI)--06 0..7i21920- 6 U. 1403(-05

PHIOTO NO. Z77? XU I(FTERS) YO (IETERSI 10 (METERS) KAPPA IRAO.I PHI (RAO.) OMEGA (RAD.o

-T32147.253 2952460.096 -1873651.717 -U.B524780+00 -0.6743570-01 -0.2101793.01

STD.ERROR 0.55270,04 0.57470+04 0.4359D004 0.1199D-02 0.27260-02 0.2779D0-32

RESIUUALS -O.la8+OS5 -0.74O10r04 0.8552D+0. -0.16730+00 -0.1b160+00 -0.13010-01

WEIGHTrS OO. JO)O)Oooo O.UOOOUUOJO 0.00000000 0.0000000 OO 0.000000030 0.0000)0000
, _ , , . _ . . _ .. . _ . , , _ , . , _ _ , . _ , . _ .

VARIANCE/CCVARIANCE qATRIX

0.0?'l490.08 0.113u00.08 -0.50h720+07 -0.157820Dot 0.14S5820+02 0.132710+0

0.113+80.08 0.330300*0R 0.1078008OR 0.543180+00 0.704240+01 0.14223D+02

-0.50i720+07 0.107810+0t 0.lq004U+08 0.226060+01 -0.2676D+,01 0.q2435D+01

-0,.157+'*OI.0 0.43LDIO.00 U.220611.01 0.143771)-05 -0.3ZU008D-o 0.475020-06

0.1452l).02 0.704240i+01 -0.286760+01 -0.320040-06 0.743190-05 0.8933)4-06

0.13271l{'01 0.142230D02 0.9241 50+01 0.47502)-06 0.899360)-06 0.77223l0-05

Plate 8: FORTBLOCK Output Listing for 12 Photo Block:

Results of Exterior Orientation for Photos 2774 and 2777
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PHuTO NIO. 1780 KC YUle) 0 (4MTkUS) ZU (METERS)

-666343.150 3059186.145 -1Q06697.6 q 6

STO.ERROR 0.*oZ610*4 0.59730*04 0.46680+04

RESIDUALS -0.26730+05 -0.15700D05 0.88980+04

-EIGHTS 0.0J0....oo 0.0--000000o 0.000000000

KAPPA (RAD.)

-0.O5L00OO*00

0.11830-02

-0,17300+00

0.000000000

PHI (RA.)

-0.55U00660-01

0.29730-02

-0.16900190

0.000000000 

VARIANCE/CIJVARIANCR MATRIX

0.391990oA 0.'13 ;73008' -0.549450'n; -0.131960Io - 0.182100i02 .1..300..01

0.137730*08 0.356720t08 0.131250+08 0.620080+00 0.780650*01 0.151470+02

-O.4945U1*07 0.131250+08 0.217860+08 0.226000+01 -0.2ZR8q9001 0.105580 + 02

-0.1319. r~il3*.21 0.6 20 0'~" ~ s 0 0 0.724300* 1 0ro.140030- US --0.220420-06 0.517910-06

0.182100+02 0.7806%0+01 -0.28989+01 -0.220420-U6 0.883670-05 0.105720-05

O. L7T301)O*I 0.151470+02 0.105581.02 0.517910-06 0.105720-05 0.89310-05

PHOIU ONU. 275 XO (METEiS) To (METESI-

-qbt.0105,0 322223%.496

STD.FROkL 0.7236+0*4 0.63220D+04

RESIDUALS -0. 4010+0, 0.39700*06

WEIGHTS 0.00000000 0 0.000000000

0.523600+08

0.1O776D+08

-0.8224.3000

0.2 2*730+02
O.'l6OtO+01
0. 31b0IU-01

LIO (METERS)

-1965292.891

0.51161)-04

-0.22830 06

0.000000000

KAPPA (RAD.)

-0.8484350a00

U.114OD-02

-0.1I4bD000

0.000000000

PHI (88D0) O;FGA IRAO.I

-0.3904660-01 -0.2132030+01

0.32020-02 0.29270-02

-0. 13;90i00 0.2303u-u

0.000000000 0.00D000000

VARIANCE/COVARIANCE MATRIX

0.179760+08 -0.437540+07 -O.R822430+00 0.228730+02 0.316010*01

0.399700*0R 0.171230+0 0.6bq8970+00 0.899620*01 0.166060+02

0.17123D+08 0.261780+08 0.214040+01 -0.216450+01 0.124900+02

0.698970+00 0.214040+01 0.129900-05 -0.40634U-07 0.52d26D-06

o.899620+01 . -0.216450D01 '-0.406340-07 0.102510-04 0.156650-05

0.166060*+02 0.124900+02 0.528261)-U6 0.156650-05 0.856700-05

Plate 9: FORTBLOCK Output Listing for 12 Photo Block;

Results of Exterior Orientation for Photos 2780 and 2785
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OMEGA (RAD.) -

-0. 2115846*01

0.28430-02

-0.11570-02

0.000000000



PHOTO NO. 2790 XU ('ETERS) YO (METERS)

-471434.720 3382315.806

STD.tIRO U..711SD0*04 0o.69?U004

RESIDUALS -0.11400+06 0.34370+06

WEIGHTS 0.000000000 0.000000000

10 (METERS? KAPPA (RA0U. PHI (RAO.) OMECGA (RAD.o

-2014442.206 -0.8463290+00 -0.1663460+00 -0.201261D+01

0.56100tO4 0.1175)-U2 0.2Ur''U -0 0.3110r-02

-0.21350+06 -0.19070+00 0.10350-01 -0.91330-(1

0.000000000 0.000000000 0.0000000)0 0.000000000

VARIANCE/COVARIANCE MATRIX

0.%0619s1)e 0.256120.0R 0.402290+07 -0. 335'491)+0 0.202990,02 0.709410e01

0.256121+Ot 0.486910.08 0.239700.08 -0.457180+00 0.116920+02 0.196660+02

0.-0225J+07 0.239700+08 0.314750+08 0.213440n+01 0.19501+01 0.154050+02

-U.o3549U+01 -0.45718000- 0.2i130~D.G G.i38030-05 -0.959s70-0o U.4445S0-06

0.0298e,+02 U.11b9200 2 O.IqolsoO+OI -0.9599D0-06 0.840710-05 0.321450-05

0.70R8*1o.1 0.196660r0? 0.154050.02 0.446f5D-05 0.378450-05 0.967120-05

PHUTU NU. 27,15 xn i(ttS{ YvO (MLTERS)

-373114.645 3545468.435

STO.lRKOP 0.83610+04 0.73680d04

RESILUALS -O.8PO40+05 0.3P900D06

WEIGHTS 0.000010000 0.000000000

10 (HETERS)

-2060708.015

0.63410+04

-0.23500+06

0.000000000

KAPPA (RAO0.

-0. 8440460+00

0.11540-02

-0.20200D00

.0000000

PHI (kAO.I

-0.16825P8000

0.321 10-02

0.52760-01

O.OO0000030

VARIANCE/C)VARIlANCE MATRIX

0.69U90n+08 J.310'lo0.O 0.704370.07 -0.344530U+0 0.265910+02 0.86

0.31081O .08 0.5O 2350.08 U.3OR440D+0 -0.518)90,00 0o12927n-02 0.21

0.7043?)+07 O.3Od44O+08 0.402091)+08 0.194810+01 0.300880.01 0.19

-0.344530{-01 -0.51d'lO00 0.19~410'01 0.133110-0U -0.9b443D-06 0.4i

0.265910.02 0.12927U+02 0.30080O+01 -0.964430-06 0.103140-04 0.3e

o.boRat l).01 0.21JSn02 O.1SH7bD*02 0.41420D-06 .3655D40-0 0.10

8tb70 +01

1 50+02

8760 02

4920-06

5540-05

b6760-04

Plate 10: FORTBLOCK Output Listing for 12 Photo Block;

Results of Exterior Orientation for Photos 2790 and 2795
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OMEGA IRAO.)

-0.Z02400*01

0.32670-02

-0. 72UUU-0

0.00030O000



PHUTO 9O. 2.O- XO3 IrmETFRS) YO METERS)

-26900Z .l16 36986A3.213

STD.E8ROR 0.'s15330J) 0.72180.04

RESIUIUOLS -U.bJ';ln*0s 0.4421i006

WEIGHTS O.0 o00o000 O.U000OOU000

lU I MTERS)

-2112284.468

0.67S50*04

-0.2484D*06

O.0OOU0000U

KAPPA IRAD.I

-0. 839604D00

0.11290-02

-U.2144U*OO

o. OO0oUUUO

PHI IRAO.'

-0.1703050-00

.)34s40-02

U.90U3U-ul

0.00OOO0000000 0

0.90e7,OeOb U.JI760U08

0. lO7600+01 0.521061*0OR

O.a123D+0O7 U.32801U+C8

-0.4401&1O)*l -0.1112OU.01

0.325531+02 0.12002D +02

0.456l 01 + 0l .20769D+U2

PHOTO NO. 2805 XU (METERS)

-1632d2.394

STO.E8ROR 0.11130O05

RESIDUALS -0.10320*o 6

wEIGHTS 0.0oooo0oo0

0.123790,09

0.361440+08

0.13290D+08

-0.5492t +1JI

0.420460D02

0.10221 n+0

VARIANCE/CUVARIANCE MATRIX

0.81239D+07 -0.440100+01 0.32553D002 n.856190D+0

0.328OIn+UR -n0.11 1[20t01 . 20IU2-02 U.ZUO6'rD-02

0.46039Dod .0.144150+01 O.30o59u*1o 0.201090,02

0.14,.15D*J1 .12742D-05 -0.127470-05 O.189360-06

0.30859D+01 -0.12747n0-5 0.118070-04 0.3261190-5

0.20109+.02 0.189360-06 0.326190-05 O.1J264D-04

YO IMETERSI

38542d7.230

0.74760+04

0. JR 7D8006

O. 003OOOU0

20 IMETERS)

-2160023.236

0.7500D+04

-0.2321D006

. 000000000

KAPPA (IRAD.)

-0.R3607i0+00

0.113PD-02

-0.22190+00

0.000000000

VARIANCE/CU(VARIANCE MATRIX

0.361440+O0 0.13299D*0+ -0.549289D0U

0.558 0o 08 0.39365D+08 -0.154870+01

0.39365D08 0o.562ss5508 0o91013nD00

-0.154sd7UU I 0.91013D000 0.12958D-05

0.12629D*02 0.468340.01 -0.15712D-05

0n.2216o*l30. 0.2.12731)U2 -U. 4uo.uL-U

0. .20460*02

0.126290D02

0.46834D001

-0.15712D-05

0.14405D-04

U. *6ujU-uo

PHI IbkA.)

- .16631 1U+00

0.3795D-02

0.10330+00.

0.000000000

O. 102ZIU*Z

0.22169D+02

0. 232730+02

0.293660-09

0.36043D-0OS

0.10lb30-04

Plate 11: FORTBLOCK Output Listing for 12 Photo Block;

Results of Exterior Orientation for Photos 2800 and 2805
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OMEGA tRA. I

-0.2022410*01

0.3204U-02

-0.6S5 )-oi'-1

. 000000J00

nOMrA IRAD.)

-0.201 326D+01

-0.69740-01

0.0030')0000



PHOTO NO. 2810

STO.ERqOR

RESIDlULS

WEIG tTl

XO (METE#S

-5sddU.743

U. 130D05

-0.7?47UO05

o. 1OOuuOo00

O 1 IMETERS)

4003245.096

0.7751D004

0.43ROeO*6

o.oooo00000

I ZO (ETERSI) KAPPA 0RAO.I PHI IRAD.I OuFiA tRAD.t

-2207544.590 -0.9491210O00 -0.1634410+00 -0.2017Ol00+0

o0.8220+04 0.11440-02 0.4221n-02 0.34450-02

-0.24670+06 -0.2169n+00 0.1324n100 -0.51200-01

0.000000000 0.000oo00000 0.0000000 0.00oo000ouoo

VARIANCE/COVARIANCE MATRIX

0.16911013'9 0.3o209DO O..182933o+08 -0.63393uo01 0.547310D02 u.113210o32

O.3AUZ9-OdO 0.601870(e8 0.477000*+0 -0.170200*01 0.124780+02 0.24u4t0-02

0.19230U+08 0.477000*08 0.709320D-08 0.53S630*00 0.607090+01 0.27647D+02

-0.63391U3I0 -0.17020D0.1 0.539t30D+00 0.1307n-s05 -0.177070-05 -o.n1-07

0.54731)D+u 0.127080#02 0.607090D+01 -0.177070-05 0.178180-04 0.374930-05

0.1132710J2 0.24043u*+0 0.27647r)+02 -0.80715D-07 0.37193U-1)5) .119670-94

PHU-IO NO. 2.15 xI) tziTERSI YU ISETEkSI LU (MTERIS) KAPPA (RAD.) PHI (RAO.) IUHCCGA IRAD.I

34791.59? 4155945.560 -224141q.551 -0.8448770+00 -0.1591060e00 -0.2014370.01

STO.eE'in O.1id4bl)5 U. 19700+04 0.9204D+04 0.1155D)-02 0.46'10-JZ 0.35230-02

RESIDUALS -0.437900+5 0.49540+06 -0.241.D-06 -0.23411)*00 0.1571030 -J.456)o-01

wEIGHTS O.OJ000000 O.3OOU000OOO 0.000000000 0.000000000 0.000000000 0.003000300

VARIANCE/COVARIANCE MATRIX

0.2211U*.09 .398950D+08 0.265620*08 -0.737280Du01 0.6d2250+2 0.131020+02

0.139850#0P 0.635220D+08 0.547700D08 -0.202060+01 0.122130+02 0.2522OD+2

0.265.21)-.. 0.547000+OR O.47120D.*U -0.138231)+OU 0.e132110- 0.311540+02

-0.737280+01 -0.20200D+01 -0.13823D+U00 .133410-05 -0.200570-05 -0.263330-06

0.682250n+z 0.122130+02 0.83211D+01 -0.200570-05 0.211680-04 0.409440D-05

0.1310du#02 0.252210002 0.311540+02 -0.26)33u-06o 0.401441-05 0.124110-U4

Plate 12: FORTBLOCK Output Listing for 12 Photo Block;

Results of Exterior Orientation for Photos 2810 and 2815
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PHOTO NO. 2e2z XOu (rTRS1 Yo (lMETERS) 10 IYMTERS) KAPPA (RAD.) PHI IVAD.. OMEGA IRAE.S

138215.442 4300913.091 -2292476.487 -0.8372350o00 -0.1549111+00 -0.2n01652+01

STO.FRROR 0.17510.05 0.91190+04 0.11140*05 0.1171D-02 0.52190-02 0.40610-02

RESIDUAL% -0.la40OC*0S 0.53C010h -0.28U0DO06 -O.244A+00 0.12993+0O -0.43490-L

WEIGHTS O.0JOOOuOOU 0.000000000 0.000000000 0.000000000 0.000OOOOOO 0.000000000

VAPIANCEICOVARIANCE MATRIX

0.10oRSl3J9 0.o392ul)+0hU l.56O020+UU -0.°3322U+01 0.915290+02 O.I2284D+02

O.53'26il,08 0.831S70.O 0.817890.08 -0.26181D+01L 0.15696D+02 0.339590+02

O.5o606t)-Oid o0.6l11dOu 0.1d415U+09 -O.L34b64001 0.1677b0+02 0.44015D00 2

-0.8W3220101 -0.26181D+01 -0.1346Dn+UI 0.1371A0-05 -0.219740-Os -O.40Vo ,n-06

O.915291)J,2 0.1569U0+02 0.16776D002 -0.219740-05 0.272380-04 0.66UOOO-05

0. 1 4 *402 0. j3 59l)+0 0.4401Sn+5 l -0.02 s21)-U 0.6400U-05 0.1f.49U-04

PHOTO NO. 2e25 Xd (1QTEkS) 0O (METERS) tU (*FTERS) KAPPA (RAO.) PHI IRAO.) OMEGA IRA(9.

2hSO04.R14 4446070.208 -Z332275.509 -0. 8406031)e00 -0.1440820+00 -0.2016920.01

STo.EPROR 0.20240+05 0.933POe½04 0.12230+05 0.11930-02 0.5770n-07 0.41690-02 

RESIOUALS -0.3129C05 0 .404hnO06 -0.269?01+0 -0.24440o00 0.1071U*00 -0.3)180-01

WEIGHTS 0.00)00o00 O.C0 OOOJ0 0.0Oon)oo 0.000000000 0.0000000o 0.000OJ00

VARIANCE/COVARIANCS MATRIX

O.40470iu09 0.52340O+08 U. 826320.8 --0.97iio0401 .1l66500+3 0.2752OD+02

0.523460+08 o.871901U.O c.T2:1.6eCe -n.2:468dU01 0.142960+02 0.35480e+02

0.426320+08 0.921180+08 0.14A46D*09 -0.290350+01 0.236180102 n.4'17650+02

-o.s9770+o0o -031468P01O -0 - .2 [o 0~ 1. O I .I Z 3 U- -- 0.250190-US' -0.968040-06

0.L16.50.03 0.142960-02 0.2361sn+02 -0.25090D-05 0.332950-04 0.7O )004n-05

o.27S/Ol)0+ 0.335490+t02 0.497650+02 -0.960U40-06 0.7?0040-05 0.173930-04

Plate 13: FORTBLOCK Output Listing for 12 Photo Block;

Results of Exterior Orientation for Photos 2820 and 2825
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RtSULTS
PHOTO COORDINATES

__ALL-EIGHTS TAENAS.O19 000.0) .... ____ ...

PH')TO] NO. POINT NO. X (MM) V (MM) VX (MM) VY (MMH

- 2774 ....----. -......1 . __. 4 .463 .. __...--7.075____..O..Q25D- _- .4083D-2. .

2774 ,e-.754 -7.109 0. 527UL-02 -0.1776U-01

2774 3 46,573 9.6b1 0.1253D-01 0.3172D-01

2714 .. -. ...-- 11 ....- 42.070 ....- -28__--- 041177D-01 .-.. 183D ..-D

2774 12 16.609 15.419 -0.14160-01 -0.47220-02

27i, 13 9.895 22.703 -0.98120-02 0.11050t-01

27'. .. _ 14 ... __ ... 17.879 .... 29.437.__.. O. 3labU-02 _.. -0.71 40-02

7? T4 15 7.281 37.797 0.48840-02 -0.88)',D-02

2714 16 -1.249 35.760 -0.24330-02 0.5298D-05

2774 . .. 17 .... 11.087 15.787 O. 152d--Ol . 0.1tlj-02

2777 1 43.860 -7.206 -0.93010-02 0.1650D-02

2177 2 32.445 -7.276 O. ?53D-01 -0.8137D-02

---.--. 2777 --_.- 41.d52 8.54L -0.3007DL-02--.0D.1424D-.01....

2777 11 37.589 -7.417 -0.60780-03 0.1671D-01

2777 12 13.281 14.030 0. 77921)-03 0.129HU-01

-... 2777 _ 3 ___ 6.976 __2. 96 _.. -0. 9711D-02__--O. 1 79D-02.

2777 14 14.588 27.396 -0.9604D-02 -0.5659D-02

2777 15 4.695 35.581 0.26361t-02 0.2976D-02

.-_2717 -- _ .-- -3.,380 3.7!a.._ 0.1539 _-. _..... .91'2D- OZ...

2777 17 8.030 14.384 -0.14260-01 -0.6310D-02

2780 ...... 1 39.577 . -7.166 -0.1046D-02 -0.1104D-01

-_._2180 . _1 2 233 1.75J3I -7-250 -0.._727D-0 0 . 9_5tL 2

2780 11 33.408 . -7.397 . 0.17990-01 0.4139D-02

2780 12 10.096. - 12.874 0.5514D-02 0.3211D-02

27d0 __ 3 _.__. 4.176.__-9 9525 ... _---0.2716D-03_-0.62.9D-02 ..

2780 14 11.472 25.67; 0.13560-01 0.19200-03

27'0 b15 2.167 33.6b6 -0.;4041)-02 0.54210-02

27i0o 16 -5.505 31.928 -0. 3j611)-02 -0.5833D-02

Plate 14: FORTBLOCK Output Listing for 12 Photo Block;

iResults of Photo Coordinates
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27?t!4 1 33.444 -6.i925 0.1495D-01 0.49410-03

27d5 2 22.620 -7.094 -0.3118D-01 -0.20010-02

.2785 _ 11.. .... 7.4_ -1. 200 _D02.__. 2b94D-02..

2785 12 5.653 11.423 0.15090-01 0.33700-02

2 ?1.'t 13 0.251 17.656 0.16500-01 -0.4745D-02

2765 ........ 1 ........ _. 5 .. 23.400 . _._. 712D-02_._0. 1Y1D-Ol_

?tf5 15 -1.42b 31.091 -0.10760-01 0.34210-02

2td5 lo -8.540 29.559 -0.79903-02 -0.!2290-01

2790 ___.. 1 . .___ 29. EdL_ -21_42L .0 . . 30-02...

2790 4 27.td3 8.763 -0.55°60-02 0.11580-01

2790 11 23.852 -21.789 -0.43410)-02 -0.2592D-)2

?79?0 . 12 2.152 _-4.280 __..L 0.7U72 L -U.Z2 LA -0_

2790 13 -2.Y04 1.377 0.20150-01 0.21930-01

;2!?i 14 3.2d8 6.482 -0. 10110-01 -0.1399D-01

2790 -..... - 15 I/... . 161...0. 151-02 .... 0.163 71)-32

2790 17 -2.014 -3.957 O.dtoO0-02 -0.384fD.-02

'",tl5 1 24.135 -2!.919 0.1730D-02 0.3Y110-02

.279. _ ._____2..4.. 60 ... 5 01.__.---0 .47950-02 __....0.2214D-02 

215 11 18.345 -22.304 -0.24450-03 -0.38700-02

2795 12 -2.031 -5.921 0.71521)-02 0.6652D-02

,?95 _ _ _ 1.._._._.-~.a4E_ -0.591 _-_JO319r01 - 0 !.. Lo 99.-.O Z-__

2795 14 -0.812 4.253 O. 6t46!)-02 -0.93'4J-UD-J

2795 15 -7.715 10.708 0.10730-01 0.21090-02

_ 279. ._.._. _.1__ ... __...5.956 ___-5-_6 I0. 19S6D-01. -0.53900-032_.

",00 I 19.907 -23.403 -0.20560-02 -0.20420-02

2O0 JO 2 9.959 -23.764 0.19530-01 0.91650-32

t_!.. J_ ... __.. 1.72d___-j1.a09 -0.1I55D-01_-0.27 -0

2dOU 4 :8.620 3.684. -0.540dD-02 ... 0.8245D-32

;': IU I1 14.334 -23.779 0.3t00D-02 0.16600-12

2ed00 .. .. .__.12 _..... .-- 5.043 . __.... -8.275 .....- 0 954 5D-02.. --- 0.55729-03_._

24JO 13 -9. O06 -3.1t Li. 1'.1 7D-f92 0.44 7'.6-02

ZO 1014 -3.751 1.417 -0. !60JD-o2 -O. 1 7!D-02

':700 15 -10.144 7.679 0. ?r5!i)-02 0.37',0 1-O7

Plate 15: FORTBLOCK Output Listing for 12 Photo Block:

Results of Photo Coordinates
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2u0o 16 -15.740 6.634 0.3919D-02 0.60040-03

2600 17 -8.712 -7.943 -0.16360-02 0.67390-03

2805 .____1 _. ._6... .88 24..149 -0..428.D-03 -0.2046D-)

2805 2 7.141 -25.096 0.20090-01 0.1Th5n-)1

2dU0 3 13.6H5 -13.718 -0.6011D-02 -0.1444D-Ol

2805 ._ 4 .... 15.782 .16i O.. dL9i-02 --- 0.1674D-U2

2?:J 11 1l.3l1 -25.116 -0.13020-01 0.6956D-03

Z.btb 12 -7.096 -10.388 0.90590-02 -0.191710-01

,2ai05 -_.-. .1....L .3.... ..-11. 103 .-.-- 5.495- mO..b5 710D-02 ..- 0.6165D-15 2 ..-2

2805 14 -5.804 -1.098 -0.1350D-01 0.2747D-01

2dO5, 15 -11.716 4.908 0.1629D-01 -0.1334D-01

aO ____ Lb... .--17.o5 ._..3.9 7_-0.12910-U1__-0.295b0-032-.

i2:oo 17 -1u.572 -U1.019 0.5141b-03 0.17040-01

2610 1 13.724 -25.087 -0.21830-04 -0.1618D-02
28!0 2 4.2bt6 -25.5H 0u.973j2)-03 0.13OO)D-)1

Ž810 3 10.452 -14.66 -0.14t90-02 -0.h23iU-72

2dlO 4 12.491 -0.3?2 -0.25T73-02 0.7624U-33

2810 11 8.375 -25.545 0. hO020-02 -0.928HJ-02

.d1l) 13 -13.286 -7.175 0.99791J-02 -0.1497D-02

2810 14 -B.278 -2.932 -0.66490-02 0.92020-03

2310 15 -13.934 2. e55 -0.76740)-02 -0.509Y10-03

2O10 I6 -18.935 1.917 0.31997D-2 0.44940-02

2Ht? 1 10.905 -25.523 0.34800-02 -0.3530D-)2

idl5 2 1.724 -Z5.993 -C.91030-03 -0.12530-02

2815 3 7.718 -15.567 -0.70410-02 U.9221G-02

2815 4 9.913 -1.803 -0.75540-02 0.5915U-03

Ž2195 11 5.h69 -Z5.943 0.67921)-02 -O. lt1'.21-12

2115 13 -14.946 -8.360 -0.50390-02 -0.1733D-02

2815 14 -10.1!6 -4.340 0.14330-02 -0.1725D-J1

2415 15 -15.439 1.2q6 0.6h50')-02 0.8:11,)-J2

il15 16 -20.182 0.439 0.1615!-02 0.1041D0-1

zi20 I .122 -26.133 -0.3b100-02 -0.7h6D0-02
5:7D 2 -0.788 -26.522 0.U040D-02 0.1771U-01

?d8 ( 3 5. 7() - 1 h. 54 -0. 22 ,'l-0? 0.140 If- i)

Plate 16: FORT BLOCK Output Listing for Plhoto Block:

Results of Photo Coordinates
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2820 4 7.461 -3.335 0.12250-01 -0.98840-02

2d20 11 3.043 -26.517 -0.31480-02 -0.72530-02

.. 20 .. _13 __ 16.620 -9.556 -- D.5O67D-02 -9 ,5094D-02

2i20 14 -11.954 -5.711 0.1135U-03 -0.3349D-02

ij20 15 -16.928 -0.221 -0.5936D-02 0.17040-02

.... 2325 1 . . 5.3_.- -2b,553 .1iD. -0.12h.D55 -1_5fl02

2325 2 -2.941 -26.982 0.99530-02 0.17670-01

2 25 3 2.682 -17.487 -0.9564D-02 -0.17520-01

u25 --.....-... 4.____. . 5.110 _ -4.601 _... 11590-02___0.1361-02.

Z25, 11 0.782 -26.950 0.3R570-02 -0.60130-03

2825 13 -18.167 -10.760 0.9304D-03 -0.10260-02

2o25 ... __ 14 . 13.99 .__ 7.057 ....... 0.3111D-U2 _ 0.12600D-1

,b25 15 -18.423 -1.754 -0.8486D-02 -0.536bU0-J2

Plate 17: FORTBLOCK Output Listing for 12 Photo Block;

Results of Photo Coordinates
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RESULTS
SURVEY COORDINATES

POINT NU. I X Y

49278.137

.... STU. EP.RD _....O..4sbZSD0 03

RE~IDUALS 0.10200+04

wEIGHT 0.030010117

1732571.951 58209.811

0.5839D+03 _ 0. e090D+03...

-0.2950D+03 -0.2092D+04

O.0000UUbB8 0.000002654

VAPIANCE/COVARIANCE MATRIX

.21391D0c+ 0.513770+04 0.1q)77AD+O5

. L..19025L- . ___ = ,16~30JQ. ...__ _-

0. -2 540D-U. - .45 .b..)- 7 '"0.245U+)J6

Correlation Coefficient

I'UINT NU. 2

STUo. EhOR

Rt SII)UALS

_ h L1iT ..- 

Y

-201044.386

0. 64150+03

-0.o57e +04

0.OU U02205

z

1l702873.190 _..-..._----aI..5_

0.6465D+03 0.6202D+03

0.22450+03 -0.2059D+03

C.000005292 -_-...0. 0 ....05191 _ _--

VAH I ANCE/CUVARIANCE MATRIX

O,4llU49D+06 ..... U 2b 0080D.+ 05 __....-.13D.05.____

0.b75350-01 0.417970+06 -0.366450D+0

-J.29c94D-01 -0.91399)-01 0.38460D+06

Plate 18: FORTBLOCK Output Listing for 12 Photo Block:

Results of Control Points 1 and 2
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POINT NO. 3

STD. ERROR

kESIOUALS

iF IGHT

259480.319

0.70730+03

0.23390+04

0.000002778

1683091.248 -352071.437

0.7366D+03 0.61160D+03

-0.327O0+03 0.1095D+04

0.000002778 0.000002778

VARIANCE/COVARIANCE MATRIX

0.500290+06 -0.81522D+05 0.103240+06

-0,156460o00 0.542630+06 -0.166260+06

0.238660+00 -0.369040+00 0.37407D+06

PCINT NO, 11

STD. ERROR

rLSIUUALS

WEIGHT

I

-100378.527

0.53840+03

-0.1879D004

0.000000002

1723742.914

0.8097D+03

0.73690+04

0.000000)002

-133724.700

0.92840+03

-0.12120+03

0.000000002

VARIANCE/COVARIANCE MATRIX

0.28991D+06 -0.83880D+05 0.590720+05

-0.19239D+00 0.655690+06 -0.480430+06

0.118180+00 -0.639090-00 0.861960+06

Plate 19: FORTBLOCK Output Listing for 12 Photo Block;

Results of Control Point 3 and NEC Point 11
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POINT NO). 12

1438455.910 -950354.867

0.2529n+04 0.1558D+04

0.345^C'04 -0.947T10D+04

0.000000002 0.00000000U2

VARIANCE/CUVARIANCE

0.16662D+07 -0.169370+06

-0.51873D-01 0.639820D07

-0.128910+00 -0.583180+00

POINT NU. 13

STI). tcROR

RtSIDUALS

I (;HT

MATRIX

-0.259200+06

-0.229790*07

0.24265D+07

Y I

-119109.219 1306499.336 -1132545.875

0.1389D+04 0.2922D+04 0.17570+04

-0.56C9U+05 -0.11190+05 -0.15110+05

0.U00000002 0.000000002 0.000000002

VARIANCE/COVARIANCE

0.1 I0OlIDU07 0.732470+U0

0.10'44D-01 0.853730D07

-0.28112D000 -0.547660+00

MATRIX

-0.,6632D)06

-0.281200+07

0.308810+07

FORTBLOCK Output Listing for 12 Photo Block;

Results of NEC Points 12 and 13
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ST9. ERROR

R S II)DOAL S

wF IG;HT

-152632.196

0.12910+04

-0.6400D+04

0.000000002

Plate 20:

X Y Z



PCINT NO. 14

123220.364

0.14940D+04

0.244D0+04

0.000000002

1327733.623 -1104416.700

0.26940+04 0.1526D0+04

0.4409D+04 -0.63310+04

0.000000002 0.000000002

VARIANCt/CUVARIANCE MATRIX

0.22329D+07 -0.42933D+06 -0.46u60D+06

-0.1Uao60+00 0.725621)+07 -0.22272D+07.

-0.20459D+00 -0.54172D+00 0.2 32Q5O+07

PLIN1 NU. IS z

154425.771

Sit). tHiUJK 0.16110+04

RESIDUALS -0.40390+04

wt [I;,T 0.000000002

VARIANCE/COVARIANCE

0.25900D+07 -0.596580D+06

-0.10280D+00 0.129720+08

-0.24609D+00 -0.555880+00

1083854.930 -

0.36020+04

0.498Q0+04

0.000000002

1347756.507

0.22230+04

0.31950+03

0.000000002

MATHIX

-0.881310+06

-0.44502D+07

0.494060+07

Plate 21: FORTBLOCK Output Listing for 12 Photo Block;

Results of NEC Points 14 and 15
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PCINT NO. b16

-1244.288 970961.940 -1439079.114

0.16320+04 0.4253D+04 0.26580+04

-O.H0060+04 -0.30o40+04 -0.57610+04

0.000000002 0.000000002 0.000000002

VAKIANCE/CUVAKIANCL

0.26640D+07 -0.66379D+06

-3.95607P1-01 0.1l0900+0O

-0.194430+00 -0.55714D+00

PCINT NUI. 17

STU. L RRPR

htS!OUALS

I6 I II-.T

MATHIX

-0.84357D+06

-O.6h2983007

0.706430D+07

X Y V

-224672.699 1373794.078 -1028307.070

0.1311D+04 0.29520+04 0.17530.04

0.20550+04 0.14460+04 -0.13360+05

.000000oo02 0.000000002 0.000000002

VARIANCE/COVAkIANCE

0.1719!t)+07 0.22312D005

0. 9651U-02 0.813630+07

-0. ?2HZ[)*00 -0.5q0960+00

MATRIX

-0.48008D0+06

-0.29553D+07

0.30738DR07

Plate 22: FORTBLOCK Output Listing for 12 Photo Block;

Results of NEC Points 16 and 17
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P'INT NU. 4 X Y Z

1455652.861 -551375.27S

0.9736D+03 0.6213D+03

0.7521D+03 0.6254D+03

0.000002347 0.000005923

VARIANCE/COVARIANCE

0. 139810+07 -0.41145D+05

-0.357410-01 0.94790D006

0.12345D-01 -0.509860-01

MATRIX

0.9'069n4*04

-0.308400+05

0.385990+06

Plate 23: FORTBLOCK Output Listing for 12 Photo Block;

Results of Control Point 4
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STD. ERHUR

kESIDUALS

WlIGHT

769400.527

0.11820+04

-0.1726D+04

0.000001240
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residuals from the adjustment but are the differences between the adjusted

value and the initial approximated value.

To complete the picture the adjusted values from the 12 photos with

six iterations (Table 12) were processed with a program listed in Appendix III

to provide the adjusted latitude, longitude and heights above or below a sphere

of 1738. 1077 km radius. The computer can provide a great number of decimals

and this is sometimes misleading towards refinement. It is felt that based

on the precision of the observations to one micron which represents a range

of 15 - 40 meters on the lunar surface, the results are significant to three

decimal places. The third decimal place of degrees also represents approx-

imately the same surface coverage ( - 30 meters) on the lunar surface. This

means that the estimated positions of the NEC points can be precisely located

through the photogrammetric procedures outlined in this study. The latitudes

and longitudes listed in Table 13 can be compared to Table 5 to show the more

precise NEC pcint location.

Table 13 Adjusted qp, A, h of NEC Points

76

Point P X h (km)
No.

11 - 4°428 93°.333 - 6.274

12 - 33. 304 96.057 - 7.319

13 - 40.803 95. 209 - 4.963

14 - 39.633 84. 698 - 6.693

15 - 50.912 81. 891 - 1.721

16 - 55.992 90.073 - 2. 101

17 - 36.453 99.288 - 7.442
________________ ~~~~~~~~~~~~~~~~~~~~~~~~~I ___



Perhaps it should be noted that all the heights are negative and represent

elevations below a radius of 1738. 1077 km. This corresponds to various contour

maps such as the ones shown in [17]. These mathematically derived contour

maps show a general depression of the lunar sphere on the eastern limb where

these points are located.
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5. SUMMARY AND CONCLUSIONS

The results show that the system originally specified in theory [33] is

workable with real data; however, as in most real data investigations numerous

problems arise that are different or not encountered in the smooth operation

of theory.

The second generation Apollo 15 film which was of excellent quality was

evaluated, points of known control were identified although the number and

location were not ideal, and unknown points were selected. Measurements

were made and the results were reduced prior to the adjustment. The results

of the adjustment show the following:

a. As the number of photos increased through the 6 and 12 photo block

the standard deviations of the NEC points as shown in Tables 9 - 12 always

decrease. As the iterations in FORTBLOCK are processed the standard

deviations also decrease, consequently the sixth iteration of the 12 photo block

provides the most favorable solution.

b. There is no significant decrease in the standard deviations of the NEC

points from the third iteration to the sixth iteration. This implies that the

solution has reached its limitations in this project although further refinement

could probably be attained with observations on additional control points if

they were available and on additional photographs within the sequence of frames

selected.

c. In all cases but one the standard deviation of the NEC Y coordinate is

greater than the X, Z coordinate as found theorectically and explained by

Sprague [33]. The one exception was NEC point number 11, the northern

most selected point. Its location is near the northern limb in the photographs

in the area similar to where the control is located. The other NEC points

range further south towards the center and lower limb of the photographed moon
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and are located closer to the nadir point of the photograph. All the photographs

were taken with the selenographic Y axis nominally towards the spacecraft

and camera, thus, the convergence is not as precise as in the X - Z direction.

This is similar to the determination of heights problem in earth-bound photo-

grammetry where the standard deviations in planimetry are less than in vertical

[10o] .

d. The correlation coefficient is shown on the lower triangle of the variance

covariance matrix in Plates 18 - 23 and is averaged for NEC points on Tables 9 -

12. For the same reasons as (c) above the six photo block shows higher correla-

tion between the X Y and Y Z coordinates than between the X Z coordinates. It

should be noted that correlation is considered relatively strong when > . 5.

This is not as prevalent for the 12 photo block.

e. Analysis of the entire variance covariance matrix for the selenographic

coordinates of the 6 photo block shows higher correlation coefficients among

the NEC points located near the nadir of the photograph (NEC points 12 - 17)

and very low correlation among points located further away from the center

of the photographs (control points 1 - 4 and NEC point 11). Also the NEC points

located near the nadir are very lightly correlated with the control points located

away from the center. This can be attributed to the poor geometry of intersect-

ing rays to points near the center and also due to the greater weights assigned

to the control points.

Even though the procedure is workable and answers were obtained there is

a questionable area that makes the solution less tenable.

Although not discussed in the main body of the report, the adjustment of the

6 and 12 photo block had an effect on the residuals and standard deviations of the

four control points. It was expected that the relatively light weights and zero

weights on the unknown or NEC points and exposure stations respectively would

cause large residuals for these as they adjusted. In some cases the movement

of the control points and the resulting standard deviations was greater than the
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standard deviations provided by NASA. The residuals and standard deviations

from the 12 photo block are shown in the following table for the control points.

Table 14 Residuals and Standard Deviations of Control Points

It is felt that the unique geometry not only from the spacecraft traversing

away from the lunar surface instead of across as in the normal case but also the

location of the control in just the northern limb creating a very narrow cone of

intersecting rays contributed to this problem.

It is concluded that what could be done under the circumstances was

accomplished with optimum results and that the additional effort to take pictures

from the Apollo spacecraft from the TEI to TEI + - one hour is minimal. It

provides an opportunity to use photogrammetry to extend lunar control to the

limb and farside exclusive of the passpoint operation in normal traversing

aerotriangulation. The problem of weak geometry can be handled by setting

the trajectory in a near equatorial orbit in order to place the control in a

more favorable position on the photograph and to use similar photography from

80

Control Point Residuals (km) Standard Deviation (km)

No. Name Vx Vy Zz ax cy U Z

1 F - 1/10 1.020 - .295 , - 2. 092 .462 .584 .809

2 CP - 3/8 - 6.576 .224 - .206 .642 .646 .620

3 Ansgarius 2.334 - .328 1.095 .707 .737 .612

4 ACIC 69 - 1.726 .752 .625 1.182 .973 .621



additional Apollo missions. This would also allow for a complete opportunity

at locating and utilizing all the control points available and to provide improved

solutions through additional perspective rays.
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6. RECOMMENDATIONS

a. It is recommended that the remaining Apollo missions in the J series

continue photographing the lunar surface with the same type of metric camera from

the TEI on through TEI + 1.5 hours as in the Apollo 15 mission. Furthermore, this

project should be repeated after the Apollo 17 mission with the combined infor-

mation and film from the three Apollo flights in this series.

b. Since the 'window' of visible features is relatively narrow longi-

tudinally every effort should be made to take advantage of available control loca-

tions. The trajectory of the Apollo spacecraft after TEI in a near equatorial orbit

as in Apollo 12 and 14 would be ideal in allowing the control points, especially the

lunar landmark control, to be centrally located on the photographed moon instead

of being on the limb.

c. Even though it is recommended that the next Apollo mission TEI

trajectory be more equatorial, the same area of approximately 900 longitude

should be rephotographed. The addition of pictures taken from another perspec-

tive would provide improved geometry for lunar point solutions. "The results

obtained through block adjustment of combined photo data taken from two or more

simulated missions were much more promising than results secured through

adjustment of single trajectory data " F33].

d. As discussed in Section 4. 2. 2 the lunar landmark control is the

most significant network of known control yet established and it is recommended

that the orbiting Apollo astronauts continue their sightings on similar features,

particularly on the far side, in order to densify this network.

e. In order to take advantage of all visible features photographed and

the bracketing reseau system of photo coordinate reduction it is recommended

that the TRANC 4 program be modified. The current procedure of requiring

four bracketing reseaus should be changed in order to accomodate all visible
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features near the terminator and limb by using a variable number of reseaus.

For example, if only three reseaus surrounding an image are available the

feature and reseaus would not be measured. Because of the particular nature

of the photography a refinement would allow the use of a variable number of

surrounding or nearby reseaus, thus making all visible features eligible for

measurement.

f) An alternative method of solving fDr the adjusted control and NEC

points is to constrain the coordinates of the exposure station. NASA has recently

made available for each photo frame a myriad of details on computer output

termed APE (Apollo Photographic Evaluation). Part of the data includes the six

elements of exterior orientation including the standard deviations as computed

from various external sources [24]. It is recommended that the next real data

report include the processing of these data using the following form:

po r I LZ LFI S

where: -_ a transformation matrix of unit vectors from

F = selenographic coordinate system (SG) to local

horizontal coordinate system (LH.)

[.M] [fi(to·w·fRDJ = [R [ ]FT[ RY]

The selenographic coordinates of the points and exposure stations must be trans-

formed to the local horizontal coordinate system since the rotation angles are
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from local horizontal coordinate system to the camera axes. It should be noted

that the orientation angles as described in [241 are of a rotation sequence with

cq primary instead of w primary as used in the programs in this study. Prior

to use of the APE data the partials of the observation equations leading to the

normals would have to be reevaluated; however, this has been accomplished

and is available.

g) It is recommended that a project similar to the Orbiter series

be initiated and designed specifically for investigating and mapping the moon.

Unmanned orbiting spacecraft with mapping cameras in orbits similar to Orbiter

IV and V would be closer to the surface and would provide better perspectives

than the post - TEI trajectory used in this study. With maximum utilization of

the Lunar Landmark Control Network, extension of control over the surface

using photogrammetric procedures would be both feasible and reliable.
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APPENDIX I

LIST OF ORBITER IV PHOTOGRAPHS WITH ACIC CONTROL INDICATED

39H3 73H2 90H3 109H2 131H3 151H3

46 76H2 95 109H3 133 156

47 77H1 95H2 110H1 134H1 156H2

53H2 77H2 96 112 134H2 156H3

53H3 78 97 113 136H3 157H2

54 78H1 97H1 113H1 137H1 157H3

59H3 78H3 97H3 113H2 137H3 158H2

60 79 98H1 114H1 138 160H2

60H2 79H1 98H2 114H3 138H3 162

61 80H1 100H3 115 139 163H3

61H1 84 101H1 120 139H2 168

64 84H1 101H2 120H3 143 177H1

66H1 85 101H3 121 143H1 184

66H2 85 H1 102H1 121H1 143H2 185H1

66H3 85H3 102H2 122 144

67 86H1 102H3 122H1 144H2

67H1 86H2 103H3 122H2 145H3

72 86H3 104 125 148H2

72H1 88H2 106H3 125H2 149

72H2 89 107 125H3 149H3

72H3 89H1 108H2 126 150

73 89H3 1.08H3 127 151H1

73H1 90 109H1 130H3 151H2
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APPENDIX II

(Programmed by Mr. Deward R. Watts May, 1970)

TRANC 4 - PROGRAM FOR TRANSFORMING

COMPARATOR COORDINATES INTO PHOTO COORDINATES

PURPOSE: The purpose of the program is to perform a general affine trans-

formation between the observed comparator coordinates and the

required photo coordinates.

THEORY: The program consists of four steps:

(1) the input of the standard reseau grid and the photo coordinate input,

(2) the formation and application of the transformation parameters,

(3) the application of corrections for radial distortions,

(4) the output of the photo coordinates in a form compatable with

the input for the FORTBLOCK adjustment program.

The reseau grid is set up by reading cards containing the reseau identi-

fication number which serves as a subscript in the CR array and the x and y coor-

dinates of that point as taken from the calibration report.

After the reseau grid has been set up the control parameters INFO (l),

COND, TYiPE are input. COND may be either RIGHT, LEFT or BOTH, depend-

ing on the position within the comparator, of the plate (s) viewed. TYPE indi-

cates whether the plate (s) were positive or negative (POS or NEG). Following

the control parameters, the center cross and photo coordinates are entered in

the order described in the section title INPUT/OUTPUT FORMATS.

During the second phase of the program, the control parameters COND

and TYPE are checked. If an invalid keyword was input, the program accepts

COND = LEFT and TYPE = NEG by default. Because of the different possible

operating conditions, a second array, TFORM, is formed. TFORM contains all

of the necessary information to transform one point. In order to begin the trans-

formation, it is necessary to retrive the coordinates of the bracketing reseau
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point from storage in the CR array. This is done by computing ID1 and ID2,

where ID1 is the Jth element and ID2 is the Ith element of the CR (I, J, K)

array. Prior to computing ID 1 and ID 2 the y comparator coordinate of a

TYPE = POS plate has been shifted by 1000. This insures the proper reseau

point will be retrieved from storage. From this point on, the affine trans-

formation, based on four reseau points, proceeds.

The adopted general affine transformation is represented by:

x = AO+ A lx' +A 2y'

y = BO + BIx' + B2y'

where

x', y' = photo coordinates (center cross origin)

x, y = comparator coordinates

AO, BO = origin shift

Al, B1, A2, B2 = remaining coefficients of the
affine transformations

The coefficients of the affine transformation are computed by adjustment of

the four x and four y comparator coordinates of the bracketing reseau points.

The average of the four repeated comparator observations of the object

point image is computed and then transformed to its photo coordinates values.

Use is made of the parameters determined in the above adjustment in the follow-

ing back solution equations derived from the original, affine equations above.

x = AO+ Alx' + A2y'

y = BO + Blx' + B2y'

Fx~ = ~B~ Al A2~iY LBOJ Bi B2 y
x A2 A

Y B1 Bj yJ BO_

Wx [B 2 -A 2 1 - AO
y1 Al A1B2 - A2B y - BO
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, B2 (x - AO) - A2 (y - BO)x
A1B2 - A2B1

- B1 (x - AO) + Al (y - BO)
A2B2 - A2B1

_ A2 (y - BO) - B2 (x - AO)
A2B1 - A1B2

B1 (x - AO) - A1 (y - BO)
A2B1 - A1B2

All image points lying within the common bracketing reseau region are

then processed by the above affine transformation. Subsequent points are then

processed entirely independently using new adjustments for each new reseau

region.

After the transformation parameters have been computed and applied,

corrections for radial distortion are applied. The output array, CP, is formed

and the point counter incremented. If COND = BOTH was specified, the counter

is incremented after the photo coordinates for the second plate have been

processed. The CP array is then printed and punched and control returned to

the main program.

LANGUAGE AND COMPUTER: Fortran IV IBM System 370/165

AVERAGE COMPUTATION TIME: 12 seconds

INPUT/OUTPUT PARAMETERS

SUBROUTINES:

DGMTRA Transposes a double precision, general matrix.

DGMRRD Returns the product of two double precision gen-

eral matrices.

RADISI Applies a correction for radial distortion to the

photo coordinates.
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Returns the double precision square root of an

argument.

ARRAYS:

INFO (4)

CR (11, 11, 2)

CCO (50, 10, 4)

A vector which contains the following information:

(1) the job number

(2) the number of points on the photograph

(3) the image photo number of the left comparator

plate

(4) the photo number of the right plate.

An array which contains the coordinates of the reseau

points generated by the Reseau Measurement Task,

project (RMT).

In the form CCO (I, J, K) the array contains the

following information. I = 1, 50 is a counter for

the number of points on the photograph. J = 1, the

point identification number. J = 2, the x compara-

tor coordinate of an object space point in the left

photo. J = 3, the y coordinate of an object space

point in the left photo. J = 5, the x coordinate of an

object space point in the right photo, J = 6, the y coor-

dinate of an object space point in the right photo, J = 7,

the x coordinate of a bracketing reseau point in the

left photo, J = 8, the y coordinate of bracketing reseau

point in the left photo, J = 9, the x coordinate of a

bracketing reseau in the right photo and J = 10 the y

coordinate of a bracketing reseau in the right photo.

K = 1, 4 the identifying numbers of the bracketing

reseau points.
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CP (50, 12)

CC (4)

FIMAGE (4)

INDEX (4)

B (4, 3)

EX

BT

UX

(4), EX (4)

(3,4)

(3), UY (3)

C (3, 3)

TFORM (4, 4)

PARX (3) PARY (3)

An array containing the elements to be output by

the array in the form indicated in the TRANC 4

subroutine, of the program listing.

A vector containing (1) the x coordinate of the left

plate center cross, (2) the y coordinate of the left

plate center cross, (3) the x coordinate of the right

plate center cross, (4) the y coordinate of the right

plate center cross.

A vector which aids the input of the standard reseau

grid generated by the RMT project.

A vector which aids the input of the standard reseau

grid generated by the RMT project.

An array containing the partials of the observation

function with respect to the transformation parameters.

Two vectors containing the residuals in x and y.

The transpose of the B matrix.

Two vectors representing the constant vector of the

normal equations.

An array representing coefficient matrix of the normal

equations..

An array containing (1) the x coordinate of an object

space point, (2) the 3y coordinate of an object space

point, (3) the x comparator coordinate of a reseau

point, (4) the y comparator coordinate. The above

information is stored for all four reseau points

bracketing the object space point, whose coordinates

are to be transformed into the photo coordinate system.

Two vectors containing the corrections to the initial

approximations of AO, Al, A2, and BO, B1,. B2.
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A variable indicating whether the routine is to

operate on the values from the left or right plates

or both.

A variable containing the type of processing which

produced the plate, positive or negative.

An indicator used to show the END OF FILE condition

has been encountered.

A counter based on the number of points on a photo

and used to index the CCO array.

A variable containing the

of the word "RIGHT. "

A variable containing the

of the word "BOTH. "

A variable containing the

of the word "LEFT. "

A variable containing the

"NEG. "

A variable containing the

"POS. "

RI

AO, Al, A2

BO, B1, B2

SUMX, SUMY

X, Y

hexidecimal representation

hexidecimal representation

hexidecimal representation

hexidecimal abbreviation

hexidecimal abbreviation

A variable representing the reseau interval.

Coefficients of the affine transformation from compara-

tor to reseau (photo) coordinate system.

Variables containing the total of the X and Y coordi-

nates of the object space coordinates summed over

all four observations.

Variables representing approximations of the point

in the comparator coordinate system.
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COND

TYPE

EOD

NPOINT

RIGHT

BOTH

LEFT

NEG

POS



XAVG, YAVG

D

DENOM

TERM 1

TERM2

XPRIME

YPRIME

XP, YP

DISTOR

INIT

JPOINT

ICOMP

K1, K2

ID1, ID2

Variables containing the mean values of the object

space point comparator coordinates.

The determinant of the C matrix.

A variable containing the computed value of the

denominator in the transformation equation.

A variable representing the difference in the mean of

the Y object space comparator and the corrected

initial approximation of the Y center cross-coordinate.

A variable representing the difference in the mean of

the X object space comparator and the corrected

initial approximation of the X center cross-coordinate.

A scaler variable containing the X coordinate of the

object space point in the reseau system.

A scaler variable containing the Y coordinate of the

object space point in the reseau system.

Variables representing the photo coordinates after

corrections for radial distortion have been

applied.

A variable representing the magnitude of the radial

distortion has been applied.

A variable which serves as an indication of the

information contained in COND, INIT = 0 for the

left plate INIT = 2 for the right plate.

A counter based on the number of points processed

by the routine for a given point.

An indicator on which to branch to the output section.

Variables representing which pair of center cross

coordinates are to be used during computation.

An indicator on which to branch to the output section.

97



K3

IPHOTO

I, J, K, L, IT,
JJ, TEMP, TEMPI

A variable containing the value of the increment

applied to the Jth subscript of the CP (I, J) array.

This value is dependent on the values stored in

COND and INIT.

A variable containing the photo number expressed in

integer form.

Variables used as temporary storage and counters

throughout the program.
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APPENDIX III

PROGRAM FOR CALCULATING p, X, h FROM X, Y, Z

PURPOSE: The purpose of the program is to solve for latitude, longitude

and heights above a lunar sphere of radius 1738. 1077 km of points

given the selenographic coordinates X, Y, Z.

THEORY: The solution is relatively straight forward for a sphere, however,

the program was written to solve for the general case of ellipsoids

using the following mathematics:

p = JX2 + y2 = N + h ) cos P

so

h - P -N
cos = p

= (Na 2 -Nb
2

N+h) sinp= ( N+he2N)sin p

after dividing by p

tan =- ( 1- 2 N N 
p N+h /

if h = 0 for first approximation

tangp = Z 1
p \

2-e I- e )

N is computed

a2

N = a cos p + b2 sin2 p

solving for new h

h = p
cos p

- N

105



inserted into

tan Z( 1 - e2 N+h

using p improved values are found for N and h. This procedure is

repeated until p and h differ by < 1 x 1012

Longitude is found directly

tan X= 
X

LANGUAGE AND COMPUTER: Fortran IV IBM system 370/165

AVERAGE COMPUTATION TIME: 5 seconds for 11 points

INPUT PARAMETERS:

A, B Semi-major and semi-minor axes of the ellipsoid

X, Y, Z

OUTPUT PARAMETERS:

qp, X, h_

in meters; in this case they are equal.

Selenographic coordinates from FORTBLOCK adjust-

ment for control and NEC points.

Latitude, longitude and height above or below the

radius. Latitude and longitude are given in degrees,

minutes, seconds and degrees and tenths. The height

is given in meters.
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